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Introduction

To obtain superior performance from both commer-
cial and military aircraft, the propulsion system must be
properly integrated with the airframe. Even if proper
integration results in little interference between the two
systems at subsonic speeds, the afterbody drag of a typi-
cal fighter airplane at high transonic speeds can still be as
much as half of the total drag of the airplane. (See ref. 1.)
Consequently, a great deal of effort has been expended
in developing and using computational methods to pre-
dict nozzle-afterbody flows with propulsive jets. (See
refs.1–9.) Although some methods used panel tech-
niques for this purpose, Navier-Stokes techniques are
needed for adequate models of the physics of the highly
complex viscous flow.

References 2–4 reported some of the earlier work in
applying Navier-Stokes equations to the problem of
nozzle-afterbody integration. References 6 and 7 ex-
tended the application by solving the three-dimensional,
Navier-Stokes equations for transonic flow over a non-
axisymmetric nozzle typical of those advocated for
advanced supersonic transports and fighters. Refer-
ences 8 and 9 further extended the application by solving
for the complete problem by simultaneously including
the external flow, the internal flow, and the jet exhaust
plume and by investigating the flow prediction perfor-
mance of several algebraic turbulence models.

The latter solutions generally agreed well with
experimental data for attached flow. However, refer-
ences8 and 9 indicated some problem areas. When mas-
sive separation existed, the algebraic turbulence models
failed to predict the separation point accurately. These
turbulence models also gave pressure levels in the sepa-
rated region that were much too high. In addition, some

of the algebraic models yielded solutions that failed to
converge to a steady state at transonic Mach numbers.

In 1992, the AGARD Working Group No. 17, Aero-
dynamics of Three-Dimensional Aircraft Afterbodies,
formulated a plan to evaluate, compare, and validate
existing computational methods for predicting nozzle-
afterbody flows with propulsive jets. (See ref.10.) The
group selected several sets of benchmark experimental
data for industry and government agencies participating
in the AGARD working group.

Two of these test sets (at free-stream Mach numbers
of 0.600 and 0.938) used the three-dimensional, nozzle-
afterbody configuration that was investigated in refer-
ences 6–9. This configuration consisted of an isolated
(i.e., no wing or tails) superelliptic body with a non-
axisymmetric nozzle and a flowing jet. The nonaxisym-
metric nozzle, which is convergent-divergent, was
originally designed as a subsonic cruise setting of a vari-
able-flap ejector nozzle for a supersonic transport. The
geometry is deceptively simple. However, it yields noz-
zle flows that range from relatively simple attached flows
at low subsonic Mach numbers to complex massively
separated flows that challenge the predictive capabilities
of state-of-the-art computational methods at transonic
Mach numbers. The configuration is designed for sub-
sonic speeds and, thus, is aerodynamically inefficient at
transonic speeds, but it is excellent for assessing and val-
idating computer codes and turbulence models over a
wide range of flow conditions.

This investigation is based on NASA Langley’s con-
tribution to the two AGARD data sets. The paper also
includes additional work. The investigation extend the
work reported in references 2–9 by modeling the viscous
dissipation with a two-equation turbulence model in all

Abstract

A numerical investigation was conducted to assess the accuracy of two turbu-
lence models when computing nonaxisymmetric nozzle-afterbody flows with
propulsive jets. Navier-Stokes solutions were obtained for a convergent-divergent
nonaxisymmetric nozzle-afterbody and its associated jet exhaust plume at free-stream
Mach numbers of 0.600 and 0.938 at an angle of attack of 0°. The Reynolds number
based on model length was approximately 20× 106. Turbulent dissipation was mod-
eled by the algebraic Baldwin-Lomax turbulence model with the Degani-Schiff modi-
fication and by the standard Jones-Launder k-ε turbulence model. At flow conditions
without strong shocks and with little or no separation, both turbulence models pre-
dicted the pressures on the surfaces of the nozzle very well. When strong shocks and
massive separation existed, both turbulence models were unable to predict the flow
accurately. Mixing of the jet exhaust plume and the external flow was under-
predicted. The differences in drag coefficients for the two turbulence models illustrate
that substantial development is still required for computing very complex flows before
nozzle performance can be predicted accurately for all external flow conditions.
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regions aft of the model nose including the jet exhaust
plume. This paper presents off-body results in the model
boundary layer and in the jet plume. It compares the per-
formance of the standard Jones-Launderk-ε turbulence
model (i.e., the model in ref. 11 as modified in ref. 12)
with the performance of the Baldwin-Lomax algebraic
turbulence model (ref.13) enhanced with the Degani-
Schiff modification for strong vortical flow (ref. 14). The
computations were done with the multiblock version of
the PAB3D computer code (refs.12 and 15), which
solves the three-dimensional, thin-layer, Reynolds-
averaged, Navier-Stokes equations and features a numer-
ical algorithm based on upwind differencing.

The standard Jones-Launderk-ε turbulence model
was chosen for the study because it had been imple-
mented in PAB3D to provide a framework for more
advanced turbulence models such as a nonlinear alge-
braic stress model or a full Reynolds stress model. At the
time of the calculations, it was the most advanced turbu-
lence model in PAB3D that would give a stable solution.
The Baldwin-Lomax algebraic turbulence model was
chosen as a baseline because it is very well known and
established. An advantage of the standard Jones-Launder
model is that its near-wall-damping function depends
only on the flow parametersk, ε, andµ, and not on the
configuration or grid (e.g., on the law-of-the-wall coordi-
naten+). Because it is an eddy viscosity model and, thus,
has an isotropic relationship between stress and strain, its
disadvantage is that it cannot accommodate anisotropic
normal stresses generated by massively separated and
secondary flows. No effort was made to tune the Jones-
Launderk-ε model to make it agree better with experi-
mental data (such as was done in ref. 16 to increase mix-
ing between the jet plume and surrounding atmosphere)
because the objective of the paper was to evaluate the
performance of the turbulence models without adjust-
ment to any set of data.

This computational investigation was conducted at
free-stream Mach numbers of 0.600 and 0.938 at an
angle of attack of 0°. The Reynolds number based on the
model length of 63.04 in. was nominally 20× 106. The
calculations are compared with experimental data.

Symbols

Unless otherwise noted, all variables are nondimen-
sionalized by appropriate combinations of the free-
stream parameters and the reference lengthL.

constants in the Baldwin-Lomax
turbulence model

a,b semimajor and semiminor axes of
superellipse defining the cross sec-
tion of model (eq. (B2))

skin-friction coefficient,

pressure coefficient,

turbulence viscosity coefficient for
k-ε model,

coefficients (eqs. (3) and (9))

c local speed of sound

e total energy per unit volume
Navier-Stokes flux vectors in
Cartesian coordinatex, y, and
z directions (eq. (A3))

Navier-Stokes flux vectors in
transformed coordinateξ, η, and
ζ directions (eq. (A2))

turbulence flux vectors in
Cartesian coordinatex, y, and
z directions (eq. (3))

turbulence flux vectors in trans-
formed coordinateξ, η, andζ
directions (eq. (2))

Klebanoff intermittency factor
(eq. (19))

maximum value ofF(n)

F(n) function in Baldwin-Lomax turbu-
lence model (eq. (18))

function in Baldwin-Lomax turbu-
lence model (eq. (17))

fµ Launder-Sharma damping func-
tion for k-ε turbulence models
(eq. (11))

H(x) Heaviside step function

J Jacobian of transformation,

K Clauser constant

k turbulent kinetic energy

L = 63.04 in., length of model from
nose to jet exit; reference length

near-wall term fork equation

near-wall term forε equation

l mixing length for turbulence
viscosity

MS model station, in.

local turbulent Mach number

A
+

Ccp Cwk, ,

Cf

τw

q∞
------

Cp

p p∞–( )
q∞

---------------------

Cµ
Cµ 0.09=

C1 C2,

F G H Fv Gv Hv, , , , ,

F̂ Ĝ Ĥ Ĝv Ĥv, , , ,

F G H Fv Gv Hv, , , , ,

F̂ Ĝ Ĥ Ĝv Ĥv, , , ,

FKleb

Fmax

Fwake

J
ξ η ζ, ,( )∂
x y z, ,( )∂

-----------------------=

Lk

Lε

Mt
k

c------
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= 0.25, cutoff turbulent Mach
number

free-stream Mach number

NPR nozzle pressure ratio,

n normal distance from wall

law-of-the-wall coordinate,

production term fork-ε equations

Pr Prandtl number

p pressure

pitot pressure

nondimensional pressure gradient,

jet total pressure

free-stream total pressure

free-stream static pressure

Q vector of dependent flow vari-
ables for two Navier-Stokes equa-
tions in Cartesian coordinate
system (x, y, z) (eq. (A3))

vector of dependent flow vari-
ables for Navier-Stokes equations
in transformed coordinate system
(ξ, η, ζ) (eq. (A2))

Q vector ofk-ε dependent flow vari-
ables in Cartesian coordinate sys-
tem (x, y, z) (eq. (3))

vector ofk-ε dependent flow vari-
ables in Cartesian coordinate sys-
tem (ξ, η, ζ) (eq. (2))

q heat flux

free-stream dynamic pressure,

R Reynolds number based on length
of model from nose to nozzle exit

r radial distance from model axis

radial dimension of superellipse
defining cross section of model

S source term fork-ε equations

source terms for equation

s distance alongξ coordinate,

TS tunnel station, ft

u, v, w velocities in physical coordinatex,
y, andz directions, respectively

friction velocity,

local velocity,

law-of-the-wall velocity,

x, y, z physical (Cartesian) coordinates
in axial, horizontal, and vertical
directions, respectively (origin at
nose of model)

offset dimensions for super-
elliptical corner of nozzle
(eq. (B5))

β exponent of superellipse defining
model cross section

Γ compressibility correction ink-ε
turbulence model (eq. (10))

γ ratio of specific heats

ε dissipation rate of turbulent kinetic
energy

µ viscosity

ξ, η, ζ generalized coordinates in
transformed coordinate system
(approximate axial, circumferen-
tial, and radial directions,
respectively)

ρ density

τ viscous stress

local shear stress at wall

φ circumferential angle measured
around model axis, deg (0° coin-
cides with positiveZ-axis in
fig. 1(a))

ω vorticity

Superscripts:

denotes quantities in transformed
coordinate system (ξ, η, ζ)

L laminar

T turbulent

Mt ,0

M∞
pt , j

p∞
---------

n
+

n ρτw

µ
-----------------

P

ppitot

ps
+

µw

ρw
2

u*
3

------------ p∂
s∂

------

pt , j

pt ,∞
p∞

Q̂

Q̂

q∞
ρ∞ u∞

2
v∞

2
w∞

2
+ +( )

2
---------------------------------------------

r ′

Sk Sε,

ds dx
2

dy
2

dz
2

+ +=

u*

τw

ρ
------

u u
2

v
2

w
2

+ +

u
+ u

u*
-----

y0 z0,

τw

ˆ
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Subscripts:

cross indicates inner-outer transition
point in Baldwin-Lomax turbu-
lence model

i inner

i, j, k x, y, z components

max maximum

o outer

t turbulent; time (eqs. (1) and (A1))

v viscous

w wall

free-stream conditions

Theoretical Formulation

Governing Equations

The Navier-Stokes equations mathematically model the physical laws governing the motion of a compressible fluid
with viscous dissipation. In PAB3D, the three-dimensional, time-dependent, Reynolds-averaged, Navier-Stokes equa-
tions are written in strong conservation form for a Cartesian coordinate system (x, y, z). Body forces are assumed to play
an insignificant role in the afterbody flow problem and are neglected. The resulting time-dependent equations for con-
servation of mass, linear momentum, and energy are then expressed in terms of a fixed generalized coordinate system (ξ,
η, ζ). The relations between the energy, pressure, and enthalpy for an ideal gas complete the system of equations.
Because the dominant dissipative effects for most aerodynamic problems arise mainly from diffusion normal to the main
flow direction, only those diffusion terms normal to the generalized coordinate most nearly aligned with the free stream
are retained. For completeness, the Navier-Stokes equations, as they were implemented for this investigation, are given
in appendix A.

Turbulence Models

In the implementation of the Navier-Stokes equations for this paper, the viscous stresses are assumed to be com-
posed of a laminar component and a turbulent component (i.e., ).The turbulent viscous dissipation, is
modeled by several formulations in the PAB3D computer code. The solutions in this paper were obtained with the stan-
dard Jones-Launderk-ε turbulence model (ref.11) as modified by Abdol-Hamid, Lakshmanan, and Carlson (ref.12).
The modifications extended the turbulence model to its full three-dimensional form and included generalized coordi-
nates and a conservative form similar to the governing equations. For comparison, calculations were also made with the
Baldwin-Lomax model (ref. 13) with the Degani-Schiff modification for strong vortical flow (ref. 14).

Jones-Launder k-ε Turbulence Model

The Jones and Launder (ref. 11) formulation for the two-equation turbulence model uses the turbulent kinetic energy
k and the dissipation rateε as the principal dependent variables. A modified form (ref. 12) of the original Jones-Launder
model is used in this study. This modified formulation is fully three-dimensional, and the equations that govern the tur-
bulent viscosity are written in a conservative form in terms of generalized coordinates as

(1)

where

(2)

∞

τi j τi j
L τi j

T+= τi j
T,

Q̂t F̂ξ Ĝ Ĝv–( )η Ĥ Ĥv–( )ζ+ + + S=

Q̂ Q
J
----= S

Sε

Sk 
 
 

= F̂
1
J
--- ξxF ξyG ξzH+ +( )=

Ĝ
1
J
--- ηxF ηyG ηzH+ +( )= Ĥ

1
J
--- ζxF ζyG ζzH+ +( )=

Ĝv
1
J
--- ηxFv ηyGv ηzHv+ +( )= Ĥv

1
J
--- ζxFv ζyGv ζzHv+ +( )=
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andJ is the Jacobian of the transformation  from the physical coordinates  to the trans-
formed coordinates

The vectors in the physical coordinate system are defined as

(3)

where

(4)

(5)

and  and  are corrections used by Jones and Launder to account for low Reynolds number flow near solid surfaces
(i.e., their near-wall model in ref. 11). In  and  is the full three-dimensional production term defined as

or, because

(6)

J ξ η ζ, ,( )/ x y z, ,( )∂∂= x y z, ,( )
ξ η ζ, ,( ).

Q
ρε
ρk 

 
 

=

F
ρuε
ρuk 

 
 

= G
ρvε
ρvk 

 
 

= H
ρwε
ρwk 

 
 

=

Fv
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ε∂
x∂
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k∂
x∂

----- 
 
 
 
 

= Gv
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ε∂
y∂
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k∂
y∂

----- 
 
 
 
 

= Hv
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ε∂
z∂

-----

µk
k∂
z∂

----- 
 
 
 
 

=

Sε C1P
ε
k
-- C2ρε2

k
----- Lε+–= Sk P ρ 1 Γ+( )ε Lk+–=
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2
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T ∂u
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∂y
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T ∂w
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T ∂u
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(wherei, j, andk represent thex, y, andz components, respectively),  can be expanded to

(7)

where

(8)

(9)

Note that the source termS in equation (1) has not been written in terms of generalized coordinates because it is
treated explicitly and because the generalized notations become very complex. However, the transformation is
accounted for during computer coding of the equations. For an arbitrary function such asg,

wherei representsx, y, or z, andj representsξ, η, andζ. The compressibility correctionΓ and the damping functionfµ
are described next.

Compressibility correction for Jones-Launder k-ε model. The rate of spread of the shear layer in compressible
flows is much lower than in incompressible flows. Several corrections for this effect have been developed in the last few
years. Wilcox’s model (ref.17), which is one of the most widely used compressibility corrections and was used in this
study, is

(10)

whereH(x) is the Heaviside step function. Here,  is the local turbulent Mach number defined as  is the local
speed of sound, and  is the cutoff turbulent Mach number specified in reference 17 as 0.25. Here,Γ is taken as zero
for no compressibility correction. For this investigation, was less than 0.2 in the region of the model. The value got
as high as 0.53 in the shear layer between the jet exhaust plume and the external flow. Hence, the compressibility correc-
tion only took effect in the exhaust plume shear layer.

Damping function for Jones-Launder k-ε model.Wall-bounded flow solutions with the Jones-Launderk-ε turbu-
lence model require damping or wall functions that adjust the turbulence viscosity near solid surfaces. The damping
function  adjusts the turbulent viscosity through the term. Far from the wall,  whereas at the wall, it is
very small. The Launder-Sharma damping function (ref. 18) used by Jones and Launder in reference 11 was also used in
this study. It has the form

(11)

P

P µT ∂u
∂y
------ ∂v

∂x
------+ 

 2 ∂v
∂z
----- ∂w

∂y
-------+ 

 2 ∂w
∂x
------- ∂u

∂z
------+ 

 2
2

∂u
∂x
------ 

 2 ∂v
∂y
----- 

 2 ∂w
∂z
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 2
+ ++ + +





=

2
3
--- ∂u

∂x
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∂y
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∂z
-------+ + 

 2



 2

3
---ρk

∂u
∂x
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∂y
----- ∂w

∂z
-------+ + 

 ––

µT
Cµρk

2

ε
-----= µε µL µT

σε
------+= µk µL µT

σk
------+= Cµ 0.09f µ=

C1 1.44= C2 1.92 1 0.3 exp Rt
2

–( )–[ ]= σε 1.3= σk 1.0= Rt
ρk

2

µlε
---------=

g∂
xi∂

-------
g∂
ξ j∂

--------
ξ j∂
xi∂

--------= ξx J yηzζ yζzη–( )=
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2

–( )H Mt Mt ,0–( )=

Mt k/c( ) c,
Mt ,0

Mt

f µ Cµ f µ 1,=

f µ exp 3.41
1 Rt 50⁄( )+
-----------------------------–+=
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Baldwin-Lomax Turbulence Model

The Baldwin-Lomax turbulence (ref. 13) model is a two-layer algebraic model, which follows the pattern of Cebeci
(ref. 19) but avoids the necessity of determining the boundary layer thickness. The turbulence viscosity is evaluated as
follows:

wheren is the normal distance from the wall and  is the smallest value ofn at which magnitudes of  and
 are equal. The turbulent stress is determined from

(12)

For the inner layer

(13)

where

(14)

andn+ has the special definition

(15)

and

(16)

For the outer layer

(17)

where  is the smallest of  and

The term is the value ofn corresponding to the maximum value ofF (i.e.,Fmax), where

(18)

and  is calculated by

(19)

The values of the constants appearing in equations (2)–(7) are listed in reference 13 as

Degani and Schiff (ref. 14) modified the Baldwin-Lomax turbulence model to determine more accurately the outer
length scale when a strong vortical flow structure or a massive separation exists. For these flows at a given streamwise
model station, they discovered that the quantity  (eq. (18)) has more than one local maximum or peak. Further-
more, the largest peak is always associated with the radial distance from the body to the edge of the backflow region, and
its use can result in an outer eddy viscosity as much as two orders of magnitude too high.

µT µT( )i= n ncross≤( )

µT µT( )o= n ncross>( )

ncross µT( )i
µT( )o

τi j
T µT ui∂

xj∂
-------

uj∂
xi∂

--------+
 
 
  2

3
---

uk∂
xk∂

--------δi j–=

µT( )i ρl
2 ω=

l 0.4n 1 exp n
+
/A

+
–( )–[ ]=

n
+

n ρwτw/µw( )=

ω uy vx–( )2
vz wy–( )2

wx uz–( )2
+ +=

µT( )o KCcpρFwakeFKleb n( )=

Fwake nmaxFmax Cwknmax u
2

v
2

w
2

+ +( )max/Fmax.

nmax

F n( ) n ω 1 exp n–
+
/A

+( )–[ ]=

FKleb

FKleb 1 5.5 nCKleb/nmax( )6
+[ ]

1–
=

A
+

26= Cwk 0.25= Ccp 1.6= CKleb 0.3= K 0.0168=

F n( )
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Hence, Degani and Schiff recommend using the local maximum of near the wall in the underlying backflow
within the separated region. To avoid selecting extraneous fluctuations, they chose the first well-defined peak away from
the wall; here, a well-defined peak in  is defined as a peak where  drops to less than 90 percent of its local
maximum value. To avoid spurious oscillations very close to the wall, the first nine grid points off the wall were skipped
during the search for the maximum value of

Numerical Procedure

Computational Domain and Grid

Figure 1 illustrates the computational model and pre-
sents a photograph of the experimental model installed
in the Langley 16-Foot Transonic Tunnel. The figure
defines the nozzle-afterbody region that, along with the
jet exhaust plume, is the primary region of interest in this
investigation. The nozzle is nonaxisymmetric with a
convergent-divergent internal geometry. A more detailed
description of the configuration is given subsequently.

Figure 2 shows details of the computational domain,
the grid, and the coordinate system. The domain and grid
were cylindrical. (See fig. 2(a).) For maximum computa-
tion efficiency, symmetry was assumed about the vertical
plane containing the model axis. Hence, the computa-
tional domain consisted of only half of the cylinder. The
domain extended≈20 model radii (1 model length)
upstream from the model nose,≈30 model radii down-
stream from the nozzle exit, and≈30 model radii from
the model surface to the far-field boundaries

The grid was body fitted (i.e., grid lines coincided
with the model surface and other boundaries) to facilitate
implementation of the boundary conditions. The grid was
composed of four blocks with point-to-point connectivity
between the blocks. (See fig.2.) The mesh density for
each block is given in table I. Block 3(a) in table I was
used in an attempt to improve the agreement between the
computations and test data in the downstream part of
the jet plume. Although its effect was negligible, the
results presented at  were computed with
block 3(a) substituted for block 3. For the grid spacing to
vary smoothly at the block interfaces, the cell dimensions
normal to the block interfaces were equal for opposing
cells on each side of the interface.

Grid lines were clustered near the body surface, on
the afterbody, near the nozzle exit, and at the nozzle
throat. They were also clustered in the circumferential
direction near the corners of the afterbody. Figure 2(a)
shows details of the surface meshes in the vicinity of the
nozzle-afterbody. The surface meshes illustrate the exter-
nal and internal shape of the nozzle. Figure 2(c) shows
details of the mesh in the vertical plane of symmetry at
the nozzle. The small base at the nozzle exit is modeled
with 29 grid points distributed along its height. The axial
spacing of the grid at the nozzle exit was 20 percent of
the base height. Grid cells next to the model surface had

a dimension normal to the surface of 0.000300 in. on the
external surface and 0.000225 in. on the internal nozzle
surface. These dimensions gave values of  for the first
grid point off the wall of 1.5 or less for the exterior of the
nozzle and 4.5 or less for the interior.

Numerical Algorithm

The solutions were obtained with the multiblock
version of the Navier-Stokes computer code PAB3D.
(See refs.12 and 15.) The PAB3D solves the
three-dimensional, time-dependent, Reynolds-averaged,
Navier-Stokes equations written in strong conservation
form for a Cartesian coordinate system (x, y, z). The
computer code allows for laminar viscous dissipation in
all three directions. Turbulent viscous dissipation can be
modeled in only two directions.

The PAB3D solves the equations by the finite vol-
ume principle with the spatial derivatives in the equa-
tions evaluated as conservative flux balances across the
grid cells. The fluxes at the cell interfaces are determined
with Roe’s upwind-biased, flux-difference splitting com-
bined with the min-mod gradient-limiting procedure to
ensure monotonicity across discontinuities such as shock
waves. The scheme is spatially third-order accurate on a
uniform grid but globally second-order accurate on a
stretched grid.

The time-differencing algorithm used in the compu-
tational procedure is an approximately factored, alternat-
ing direction, implicit scheme in delta form. The
approximate factorization is applied in the two cross-
flow directions, while the terms in the axial, or main
flow, direction are split and added to the two resulting
factors.

Boundary Conditions

Navier-Stokes Equations

Because the free stream is subsonic, Riemann invari-
ants for a one-dimensional flow were used to calculate
the primitive flow variables  and p at the
computational domain inflow  and far-field

 boundaries. (See fig. 2(a).)

Reflection boundary conditions were imposed at the
vertical plane of symmetry  and  of
the computational domain and on its centerline (
ahead of the model and in the nozzle and plume). At the

F n( )
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outflow boundary  where the flow is a mix-
ture of the jet exhaust and the free stream, all gradients
were set to zero regardless of the free-stream conditions.

At the jet inflow boundary, which is subsonic, jet
total pressure, jet total temperature, and flow angle were
specified. Static pressure was extrapolated to the bound-
ary from the interior of the computational domain.
Finally, no-slip and adiabatic wall boundary conditions
were imposed on the body surface.

Turbulence Equations

Boundary conditions for the Jones-Launderk-ε tur-
bulence model consisted of the turbulent kinetic energyk
and turbulent dissipationε set equal to zero at the wall
boundaries. At the symmetry and outflow boundaries, the
gradients of these two terms were set equal to zero.

At the far-field boundary, a characteristic boundary
condition fork andε, which is similar to the Riemann-
invariant boundary condition for the Navier-Stokes equa-
tions, was used. However, the turbulent characteristic
condition contains only one eigenvector.

Transition from laminar to turbulent flow for the
computations was fixed at the third grid plane down-
stream of the model nose in block 2 and the nozzle
inflow station for the internal flow in block 4. In the
experimental investigation, transition was fixed at 1 in.
behind the nose of the model. Although not known for
sure, the internal flow in the experimental model is
thought to be turbulent. The boundary conditions for the
turbulent quantities at this transition plane were obtained
in the following manner. First, the vorticity was com-
puted in the two preceding laminar planes, and the turbu-
lent kinetic energyk was scaled to the shape of the
vorticity profiles. The maximum value ofk was set to
1 percent of the square of the maximum velocity in the
plane. The turbulent dissipation was then computed from
the relation

Numerical Solution Strategy

Although Roe’s flux-differencing scheme is used to
compute the fluxes for the explicit side of the equations,
van Leer’s flux-splitting scheme is used for the implicit
side. This procedure enhances the robustness of the com-
puter code and maintains the desirable characteristic of
Roe’s scheme of accurately capturing discontinuities
with one or two grid points.

The inflow grid block 1 was run as a laminar block
with the viscous dissipation imposed in only the radial
direction. Blocks 2–4 were run as turbulent blocks. Tur-
bulent dissipation was modeled by the modified Jones-
Launderk-ε and the Baldwin-Lomax turbulence models

for block 2 external to the model and for block 4 internal
to the nozzle. For these blocks, the thin-layer assump-
tion, which only retains the viscous terms normal to the
surface of the model (theη direction), was made. In the
plume block 3, only the Jones-Launderk-ε turbulence
model was utilized because the turbulent viscosity in the
Jones-Launderk-ε model depends only on the flow and
not on the distance from some surface as with the alge-
braic Baldwin-Lomax model. In this block, viscous terms
were imposed only in the radial direction, and the com-
putation included the calculation of the viscosity in both
the radial and circumferential directions (i.e., theζ andη
directions). The two computations gave essentially the
same results.

In these computations, a grid-sequencing strategy
was followed to further enhance the convergence. The
strategy, which has been used in many computer codes,
consisted of starting the solution on a coarse mesh and
then transferring the solution to successively finer
meshes. To conserve computer resources with the Jones-
Launderk-ε solutions, the turbulence should be devel-
oped fully on the coarser grid before switching to the
next finer grid. The solutions were first run on the coars-
est grids for almost 8000 time steps. This strategy was
especially important at the free-stream Mach number of
0.600 because the turbulence developed more slowly
than it did at the free-stream Mach number of 0.938.

To alleviate numerical stiffness, the Jones-Launder
k-ε equations are implemented in PAB3D uncoupled
from the Navier-Stokes equations and from each other.
They are also solved with a much smaller Courant-
Friedrichs-Lewy (CFL) number than the Navier-Stokes
equations (approximately 0.25 percent of the CFL num-
ber of the Navier-Stokes equations). This strategy has not
noticeably affected the convergence rate or the quality of
the solutions. (See ref. 12.)

For the solution to converge quickly to a steady state
while remaining stable, the CFL number was allowed to
adjust from one iteration to the next. Usually, the CFL
number quickly adjusted to a value of approximately
nine. At each iteration, the CFL number was the same for
each grid cell. The complete solution atM∞ = 0.938
took a total of 37 hr on the Langley Cray Y-MP
supercomputer.

Computer Resource Requirements

The computations for this study were run on the
Langley Cray Y-MP supercomputer. On this machine,
PAB3D required the following resources:

ξ ξmax=( ),

ε f k ε u v w, , , ,( ).=
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Experimental Apparatus and Data

The experimental databases for this report were
obtained in the Langley 16-Foot Transonic Tunnel,
which is a continuous atmospheric single-return wind
tunnel with an octagonal slotted test section. Refer-
ence20 gives a thorough description of the wind tunnel.
Figure 1(b) is aphotograph of the model mounted in the
wind tunnel; figure 3 shows the general arrangement of
the wind tunnel model and support system. The center-
line of the model was aligned with the centerline of the
wind tunnel. High-pressure air was used to simulate the
jet exhaust. The model blockage was 0.14 percent of the
cross-sectional area of the wind tunnel test section. The
maximum combined blockage of the model and support
system was 0.19 percent.

Experimental Model

The experimental model, which was 63.04 in. long,
consisted of an isolated (i.e., no wing or tails) super-
elliptic body with a nonaxisymmetric convergent-
divergent nozzle attached. The model had a conical nose
that blended smoothly into a superelliptical cross section
at fuselage station 26.50 in. The cross section at that sta-
tion was nearly rectangular with rounded corners. The
external geometry then remained constant to fuselage
station 55.05 in. where the nozzle connected to the body.

The specific nozzle configuration considered in this
investigation represented a transonic cruise dry-power
setting of a variable-geometry nozzle. The nozzle is typi-
cal of those advocated for supersonic transports and
advanced fighter airplanes. Geometric details of the non-
axisymmetric convergent-divergent nozzle are given in
figure 4. Figure 5 depicts the pressure orifice locations
on the external and internal surfaces of the nozzle.

Internally, the sidewalls of the nozzle are flat and
parallel. The aspect ratio of the nozzle throat (i.e., the
ratio of the width to height of the nozzle throat) was
2.380, and the aspect ratio of the nozzle exit was 1.9. The
ratio of the exit area to throat area was 1.250. This ratio
gives a design nozzle pressure ratio (the ratio of jet total
pressure to free-stream static pressure) of 4.25 and a
design exit Mach number of 1.6.

The external cross-sectional geometry varied from
the superellipse at the nozzle connect station to essen-
tially a rectangle with superelliptical corners at the noz-

zle exit. The flap boattail angle was 17.56°, and the
sidewall boattail angle was 6.93°°. The equation defining
the external cross-sectional geometry of the nozzle is

(20)

where  andβ are given in figure 4(b) as func-
tions of x. A mathematical description of the complete
model (external and internal geometries) is given in
appendix B.

Experimental Data

The experimental data that were used in this investi-
gation are part of a broad database for the nonaxisym-
metric nozzle. Except for the plume surveys published in
reference 21 and parts of the surface pressure data in ref-
erences 6–9, most of the experimental data have not been
reported. This paper contains some of the surface pres-
sure data not previously published by NASA; however,
the data were furnished to the AGARD working group
mentioned in the introduction.

The data were taken with the jet exhaust simulated
with high-pressure air at a total temperature nominally
equal to 544°R. For comparison, the free-stream total
temperature was approximately 581°R at M∞ = 0.600
and 620°R at M∞ = 0.938. The jet total pressure ratio
(i.e., ratio of jet total pressure to free-stream static pres-
sure) was 4.0, which is a value close to the design pres-
sure ratio of 4.25. During the experiments to obtain the
sample test data, boundary layer transition from laminar
to turbulent flow was fixed at 1 in. from the nose of the
model (atx/L = 0.016) with a 0.1-in-wide strip of No. 90
grit. The absolute error in the free-stream Mach number
is no greater than  (See ref. 20.) All pressures
were measured with electronic pressure-scanning mod-
ules. The accuracies of the afterbody pressure coeffi-
cients are  and  at the free-stream Mach
numbers of 0.600 and 0.938, respectively.

For completeness, the experimental data used in this
paper are tabulated in tables II and III. Figure 5 provides
the locations of the external and internal pressure ori-
fices, which were approximately 0.040 in. in diameter.
The radii and circumferential angles of the pitot rake
locations given in table III (excerpted from ref. 21) are
given in the model coordinate system. The locations in

Mode
Words of memory,

per grid point
Computational time,

µsec/grid point/time step

Laminar 15 33

Baldwin-Lomax turbulence model 15 33

k-ε turbulence model 20 44

y y0–

a
-------------- 

 
β z z0–

b
------------- 

 
β

+ 1.0=
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this paper are identical to the ones given in reference 21;
however, in reference 21, the radii and circumferential
angles are given in the rake coordinate system whose
center was offset from the model axis.

Results

This section presents a discussion of the computa-
tional performance of the standard Jones-Launderk-ε
turbulence model and the Baldwin-Lomax algebraic tur-
bulence model for the following classes of flows that
were encountered during this investigation:

1. Subsonic flow with both favorable and adverse
pressure gradients and little or no separation (This
type of flow developed on the external surface of
the afterbody atM∞ = 0.600.)

2. Subsonic and supersonic attached flow with both
strong favorable and adverse pressure gradients
and a very thin boundary layer (This type of flow
developed on the internal surface of the nozzle at
NPR = 4.0.)

3. Transonic flow with both favorable and strong
adverse pressure gradients and massive separation
(This type of flow developed on the external sur-
face of the afterbody atM∞ = 0.938.)

4. Jet mixing between the exhaust plume and the
external flow

The ability of the turbulence models to predict sur-
face pressures, skin friction, boundary layer profiles, and
total pressure profiles in the jet exhaust plume is exam-
ined for each of these classes of flows. In addition,
details of the flow in the region of the nozzle throat are
discussed as well as convergence properties of the solu-
tions. Finally, the culmination of these details into after-
body drag is discussed for each turbulence model.

Numerical Convergence

Numerical convergence for this investigation was
based on the residual and the computed pressures. The
convergence history atM∞ = 0.938 with the Jones-
Launderk-ε turbulence model is presented in figure 6
and is typical for all test computations. As explained in
the previous section on the numerical solution strategy,
the solution was started on a coarse mesh and was trans-
ferred to successively finer meshes to enhance conver-
gence. The spikes in the residual at approximately 3400,
7600, and 8400 iterations indicate when the solution was
transferred to the next finer mesh. The solution has con-
verged by four orders of magnitude in 10 000 iterations.

A brief grid study for this basic configuration has
been reported for a baseline configuration composed of
this experimental model with a sting (i.e., solid plume

simulator) attached. (See refs. 6 and 7.) The grid for the
baseline configuration consisted of a single block.
This study investigated mesh densities of 64× 10 × 32,
129× 33 × 65, and 257× 65 × 129; the three numbers in
each mesh pertain to the densities in the axial, circumfer-
ential, and radial (i, j, andk) directions, respectively. The
results, which were obtained at free-stream Mach num-
bers of 0.8 and 1.2, indicated that the solutions were
essentially grid converged for the 129× 33 × 65 mesh.
That particular mesh contained 129 grid planes in the
axial direction for the combined length of the model and
sting plume simulator but only 29 axial grid planes in the
nozzle-afterbody region.

The effect of mesh density was investigated further.
The primary multiblock grid for this investigation con-
tained 113× 53 × 77 planes in the external model block.
(See fig. 2 and table I.) Of the 113 axial planes, 57 were
in the nozzle-afterbody region, which resulted in a mesh
density on the external surface of the nozzle of 57× 53.
(See fig. 2(b).) The internal nozzle block had a mesh den-
sity on the surface of 89× 53. Numerical experiments
were conducted with this grid and with one created by
deletion of every other grid plane in the axial and circum-
ferential directions.

When very little or no separation occurred, such as at
M∞ = 0.600, or when the viscous dissipation was mod-
eled with the Jones-Launderk-ε turbulence model, very
little difference was noted between the results for the two
meshes other than slightly better resolution for the finer
mesh. However, atM∞ = 0.938, strong shocks and mas-
sive separation exist, and the two grids yielded different
results with the Baldwin-Lomax turbulence model.

Figure 7 presents the results on the external surface
of the nozzle in the vertical plane of symmetry atM∞ =
0.938 for the Baldwin-Lomax turbulence model. The
pressures presented in figure 7(a) show only slightly bet-
ter resolution for the finer mesh (i.e., the external shock
is defined slightly better, and the internal expansion-
contraction pattern is defined better). However, the finer
grid results in an underlying very thin secondary separa-
tion bubble within the primary separated region as shown
by the velocity vectors near the surface in the separated
region. (See figs. 7(b) and 7(c).) The flow direction in the
secondary bubble is toward the nozzle exit counter to the
direction of the primary separated flow. The secondary
bubble velocity vector plots at two different iterations
(fig. 7(b)) show that the solution has not converged to a
truly steady state. The underlying secondary separated
region was far less evident for the coarser mesh, possi-
bly, as a result of the coarse-mesh solution having con-
verged better. The fine-grid solution was run for
approximately 30000 iterations without converging to a
steady state. Unconverged numerical solutions had been
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obtained previously with some algebraic turbulence
models. (See ref. 8.) Whether or not this solution would
eventually converge to a steady state was never deter-
mined, but further investigation was not deemed prudent
due to the extensive computer resources required.

The spacing of the grid cells normal to the surface of
the model was 0.000300 in. for the external surface and
0.000225 in. for the internal surface. As figure 8 shows,
these dimensions give values of  for the first grid
point off the wall of 1.5 or less for the exterior of the noz-
zle and 4.5 or less for the interior. For the Reynolds num-
bers of this investigation, placement of the first grid
plane closer to the surface should not substantially
improve the accuracy of the pressure. Skin friction, as a
function of  for the first grid point off the wall, was
investigated for a flat plate in reference 12. These results
suggest that the computed skin friction should be within

 percent of the grid-converged (for the normal coor-
dinate) value for the external surface. They also indicate
that, for the internal surface, the computed skin friction
should be within  percent for the Jones-Launderk-ε
turbulence model and within  percent for the
Baldwin-Lomax turbulence model.

Free-Stream Mach Number of 0.600

The qualitative character of the overall flow field at
M∞ = 0.600 is given in figures 9–11. Figure 9 presents
Mach number contours in the vertical and horizontal
planes of symmetry for the Jones-Launderk-ε and
Baldwin-Lomax turbulence models. Figure 10 presents
the corresponding velocity vectors near the nozzle exit.
Figure 11 presents the corresponding computed oil flows
on the external and internal surfaces of the nozzle.

Both Mach number contours and velocity vectors
indicate that the flow is well behaved (except for the dis-
tortion of the sonic line at the nozzle throat) at this free-
stream Mach number. By themselves, they give little or
no indication that the flow separates on either the exter-
nal or internal surface of the nozzle. The contours also
illustrate the initial thinning of the boundary layer as the
flow accelerates around the shoulder of the external sur-
face of the nozzle and its subsequent thickening as the
flow decelerates on the aft part of the nozzle.

Although the Mach number contours and the veloc-
ity vectors do not suggest separation, the simulated oil
flows shown in figure 11 indicate that both turbulence
models predict that the flow separates along a line at the
corners of the external surface of the nozzle. (See
fig. 11(a).) For the Baldwin-Lomax model, the flow also
separates on the top and bottom of the external surface
near the exit. However, this separated region is extremely
thin as indicated by the velocity vectors. The flow does

not appear to separate on the internal surface for either
turbulence model.

Figures 12–16 present quantitative details of the
solution atM∞ = 0.600. Figure 12 presents the computed
and measured pressure coefficients on the external sur-
face of the nozzle. A sketch in each of the figures indi-
cates which row of pressures is plotted. The base
pressure data are plotted atx/L = 1.00. A comparison of
the computed pressures and data shows that both turbu-
lence models predicted the pressures on the external sur-
face of the nozzle very well. The only discrepancy
between the computations and experimental data is at the
base for the top row. (See fig. 12(a).) The computed base
pressures for the other rows agree very well with the
experimental data (i.e., the data points atx/L = 1.0). They
agree particularly well for the side row (fig. 12(e)) where
the sidewall boattail angle is smaller and the base is
thicker than they are on the top flap. (See the sketch of
the nozzle in fig. 4.)

The distribution of the ratio of the internal nozzle
wall pressures to the jet total pressure is shown in fig-
ure13 as a function ofx/L. The geometric throat of the
nozzle is atx/L = 0.9077. A strong favorable pressure
gradient exists in the convergent section of the nozzle.
Downstream of the throat, the pressure gradient oscil-
lates between adverse and favorable.

Again, both turbulence models do an excellent job
of predicting the pressures. The spikes in the pressures at
x/L ≈ 0.89 are a result of the sharp break in the internal
nozzle contour at the point where the nozzle starts to con-
tract. The solution is probably invalid at that point. The
oscillations downstream of the throat reflect the pattern
of compression and expansion waves of the flow inside
the nozzle. As the boundary layer profiles show, the
boundary layer is extremely thin inside the nozzle.
Hence, the flow is dominated by inertial and compress-
ible effects, and viscous effects are relatively unimpor-
tant in computing the pressures.

Figure 14 presents the computed skin-friction coeffi-
cients. No experimental data were available for skin fric-
tion. The Jones-Launderk-ε turbulence model predicts a
value of the skin-friction coefficient approximately
20 percent higher than that of the Baldwin-Lomax model
on the external surface of the nozzle-afterbody and
downstream of the throat on the internal surface.
Upstream of the throat, where the flow is subsonic and
strongly accelerating and the boundary layer is very thin,
both turbulence models give essentially the same results
except for the spikes atx/L ≈ 0.89 where the sharp break
in the internal nozzle contour occurs. Because the turbu-
lence level should be very low in this region of strongly
accelerating flow, the choice of the turbulence model
should have minimal effect.
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Figure 15 shows computed universal law-of-the-wall
boundary layer profiles for the flow over the constant
cross section of the model leading up to the nozzle-
afterbody. Unfortunately, no experimental boundary
layer data were available for this investigation. The pro-
files are presented at axial model stations starting about
midway along the constant cross section and ending at
the nozzle connect station. By a technique similar to that
employed in reference 23, the streamwise pressure gradi-
ents at the boundary layer stations are normalized by an
appropriate combination of  and  to give a

law-of-the-wall pressure gradient The

pressure gradients are relatively mild at the forward sta-
tions and become increasingly more severe as the nozzle
connect station is approached.

The profiles for both turbulence models agree well
with theory in the inner part of the viscous sublayer.
Although they both show a law-of-the-wall characteristic
in the logarithmic region, the Jones-Launderk-ε turbu-
lence model generally agrees with theory in this region
better than the Baldwin-Lomax model does. This agree-
ment with theory is consistent with references 23 and 24,
which indicate that the universal logarithmic (law-of-the-
wall) relationship holds for mild pressure gradients. The
Jones-Launderk-ε turbulence model predicts that the
slope in the outer portion of the logarithmic region
decreases as the pressure gradient becomes more severe.
The Baldwin-Lomax model also seems to predict this
trend but not as clearly as the Jones-Launderk-ε turbu-
lence model does. This decrease in slope also seems to be
consistent with the pressure-drop data of reference 24.

Figure 16 shows velocity and pitot-pressure bound-
ary layer profiles for the external and internal surfaces of
the nozzle-afterbody. Profiles of the ratio of the pitot
pressure to free-stream total pressure are presented to
correspond with the data in the jet plume. The jet plume
data are presented and discussed subsequently.

The external and internal boundary layer profiles are
plotted to the same scale to show clearly the relative
thickness of the two boundary layers. Inside the nozzle,
the boundary layer is extremely thin. As a consequence,
very little difference can be seen between the profiles for
the two turbulence models. The external profiles for the
Jones-Launderk-ε turbulence model have a flatter, more
turbulent characteristic near the wall, which results in
higher skin friction as indicated in figure 14. The exter-
nal profiles illustrate that the boundary layer gets thicker
as the flow decelerates in its approach to the nozzle exit.
This effect is more evident for the top of the nozzle
(φ = 0°) than for the side (φ = 90°) because the decelera-
tion is much stronger on the top.

Details of Throat Region

Although the primary subject of this paper is the
comparison of turbulence models, the flow phenomena
in the throat region are essentially the same for both tur-
bulence models, and the physics of the flow in the throat
region is discussed briefly in this section. Figures 17–19
show details of the internal flow in the region of the noz-
zle throat. The Mach number contours in the vertical
plane of symmetry (fig.17) are nearly the same for both
turbulence models.

The Mach number contours illustrate the distortion
of the flow, including the sonic line, in the region of the
throat. While the sonic line is upstream of the geometric
throat on the upper and lower walls, it is downstream of
the geometric throat on the centerline of the nozzle. (See
fig. 17.) The Mach number contours also illustrate that,
near the nozzle wall, the flow reaches sonic speed
upstream of the geometric throat (x/L = 0.9077), contin-
ues to accelerates until it is into the divergent section of
the nozzle, then decelerates (x/L ≈ 0.909), and finally
accelerates again (x/L ≈ 0.920). This latter characteristic
of the flow reflects the internal pressure distributions
shown in figure 13 and is typical of nozzles with small
throat radii, as was mentioned briefly in reference 8.

Here, the distortion of the flow at the throat appears
to be the result of the inertial properties of the fluid and
of wave propagation as it occurs in supersonic flow. The
flow distortion does not appear to be caused by viscous
effects because the boundary layer is extremely thin, and
the flow is not separated. (See the details of the velocity
vectors for the Jones-Launderk-ε turbulence model in
fig. 18.) The details of the simulated particle traces
(fig. 19) show that the minimum area of each successive
stream tube progresses downstream as the centerline of
the nozzle is approached from the wall. This result is
consistent with the Mach number contours shown in fig-
ure 17. The result further supports the contention that the
distortion is due to the inertial properties of the fluid
because inertia would keep the flow from reacting instan-
taneously to the curvature of the wall or to the previous
stream tube. In other words, as the centerline is
approached from the wall, the turning of the flow in each
successive stream tube would be slightly delayed and,
hence, occur farther downstream. The particle traces also
illustrate the contraction and expansion of the stream
tubes as the flow negotiates the shocks and expansions
inside the nozzle.

Free-Stream Mach Number of 0.938

Figures 20–22 show the overall qualitative charac-
teristics of the flow field atM∞ = 0.938. The Mach
number contours (fig. 20) are basically the same for
both turbulence models. They illustrate, even more
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dramatically at this Mach number than they did atM∞ =
0.600, the thinning of the boundary layer as the flow
accelerates around the shoulder of the boattail on the
external surface. The contours show that the external
flow at this Mach number is very complex. The flow
accelerates to supersonic speeds and develops strong
shocks on the top, bottom, and sides of the nozzle. Mas-
sive separation exists on the top and bottom of the noz-
zle. Internally, the flow is essentially the same as it was
at M∞ = 0.600 because, at this nozzle pressure ratio, the
internal flow is basically independent of the free-stream
Mach number.

Figure 21 presents the velocity vectors in the vicinity
of the nozzle exit. The figure shows that the separation
bubble for the Jones-Launderk-ε turbulence model is
almost as extensive in the wetted area as for the Baldwin-
Lomax model but is approximately half as thick.

The computed oil flows (fig. 22) illustrate the com-
plex recirculation patterns in the separated region. They
also show that, although the separation is confined to the
top and bottom of the nozzle for the Jones-Launderk-ε
turbulence model, it extends partway down the sides of
the nozzle for the Baldwin-Lomax turbulence model.
The traces for the Baldwin-Lomax model illustrate the
underlying secondary separation bubble within the main
separation bubble. As discussed previously in the section
on convergence, the secondary bubble tended to move
downstream, which indicated that the Baldwin-Lomax
solution at this Mach number was not fully converged.
The solution was run for approximately 30000 iterations,
and further investigation of this particular aspect was not
deemed prudent due to the extensive computer resources
required. Numerical solutions, which continue to change,
have been encountered previously with this and another
computer code for this particular problem. (See refs. 8
and 9.)

Figures 23–27 present the quantitative details of the
solutions atM∞ = 0.938. They illustrate that neither tur-
bulence model provided entirely satisfactory results for
this separated flow condition. Figure 23 presents the
pressure coefficient distributions for the external surface.
The distributions show that, up to the separation point,
little difference exists between the pressures for the two
turbulence models and that the computations agree with
the experimental data very well. The ability of the two
turbulence models to predict the shock-induced separa-
tion point and the pressure level in the separated region is
less encouraging. The Baldwin-Lomax algebraic model
predicts the shock location farther upstream than the
Jones-Launder, two-equation,k-ε model and seems to
agree slightly better with the experimental data in this
respect. In return, the Jones-Launderk-ε turbulence
model generally predicts the pressure level in the sepa-

rated region and the base pressures (i.e., the data points at
x/L = 1.0) better than the Baldwin-Lomax model does. It
also yielded a steady solution at this Mach number,
unlike the Baldwin-Lomax model.

Figure 24 presents distributions of the ratio of the
internal pressures to the jet total pressure forM∞ = 0.938.
As at M∞ = 0.600, both turbulence models give results
that agree extremely well with the experimental data.
Other than a very slight difference in the predicted pres-
sures where the internal shock cells compress the flow,
no significant difference is noted between the results of
the two models. Because there is no separation inside the
nozzle and the boundary layer is extremely thin, these
results would be expected.

The distributions of the skin-friction coefficients
(fig. 25) are similar to the ones atM∞ = 0.600 except for
the separated regions. Up to the point of separation, the
Jones-Launderk-ε turbulence model gives values of
skin-friction coefficients that are approximately 20 to
25percent higher than values predicted by the Baldwin-
Lomax turbulence model; no experimental data were
available for skin friction. Because the two models pre-
dict different types of flow and recirculation patterns in
the separated regions, the corresponding skin-friction
coefficients are also different. For instance, although the
major part of the upper and lower flaps are separated for
the Baldwin-Lomax solution, the underlying secondary
separated region, where the flow direction is toward the
nozzle exit (figs. 7(c) and 22(a)), gives positive values of
skin friction. Keep in mind that the precise surface flow
pattern and skin-friction distributions in this Baldwin-
Lomax computation are artifacts of the unconverged
solution.

Figure 26 shows the computed universal law-of-the-
wall boundary layer profiles atM∞ = 0.938. The profiles
are at stations along the constant cross section of the
model leading up to the nozzle-afterbody. Although the
axial pressure gradients are stronger at this Mach number
than they are atM∞ = 0.600, the trends and characteris-
tics of the law-of-the-wall boundary layer profiles are
similar. Basically, both turbulence models predict a law-
of-the-wall characteristic of the boundary layer, with the
Jones-Launderk-ε model agreeing better with theory
than the Baldwin-Lomax algebraic model does.

The velocity and pitot-pressure boundary layer pro-
files for the external and internal surfaces of the nozzle-
afterbody are presented in figure 27. They are also simi-
lar to the profiles atM∞° = 0.600 for the internal surface at
all stations and for the first station on the external surface
where the flow is still attached. However, at the last two
stations (x/L = 0.9426 and 0.9999) behind the strong
shock, a noticeable loss occurs in the maximum velocity
throughout the boundary layer. The loss is much greater
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for the Jones-Launderk-ε turbulence model than it is for
the Baldwin-Lomax model.

The profiles on the top of the nozzle also show the
extent of the separated region and the strength of the
backflow in it. The Jones-Launderk-ε model predicts a
separated region that is approximately half as thick
as that predicted by the Baldwin-Lomax model. For
the Jones-Launderk-ε model, the predicted speed of
the backflow in the separated region near the nozzle exit
(x/L = 0.9999) is approximately one-third of the speed of
the backflow predicted by the Baldwin-Lomax model.
One possible explanation for this effect is that the
Baldwin-Lomax model only takes into account the local
vorticity in computing the viscosity, whereas the Jones-
Launderk-ε turbulence model takes into account a more
three-dimensional picture of the vorticity and other mean
flow variables. Another explanation, which may be more
plausible, is that the Baldwin-Lomax model is a two-
layer algebraic turbulence model. Once the eddy viscos-
ity shifts from the inner-layer formulation to the outer-
shear-layer formulation, the viscosity is substantially
reduced and cannot revert to the inner-layer formulation.
In contrast, the Jones-Launderk-ε turbulence model can
continually adjust the viscosity. Hence, the reduced vis-
cosity of the outer layer of the Baldwin-Lomax algebraic
model would probably give a thicker separated region.

Jet Exhaust Plume

Computational results in the jet exhaust plume for
the free-stream Mach number of 0.600 are presented
in figures 28 and 29. These results are compared with
extensive pitot-pressure data from reference 21.
Although results for both the Jones-Launderk-ε and
Baldwin-Lomax turbulence models are given, the turbu-
lent dissipation downstream of the nozzle exit (grid
block3(a)) was calculated only with the Jones-Launder
k-ε turbulence model. Only the flow in the vicinity of the
model (grid blocks 2 and 4) was calculated with both tur-
bulence models. Therefore, differences in the pitot-
pressure profiles in the plume for the two turbulence
models are the result of differences in the initial profiles
at the jet exit station (x/L = 1.00).

This procedure was followed because, in the Jones-
Launder k-ε turbulence model, the turbulent viscosity
depends only on the flow, and, thus, the model is a logi-
cal choice to use in free-shear layers. In contrast, the tur-
bulent viscosity in the Baldwin-Lomax model is a
function of the nondimensional distance from a wall or,
for free-shear flow, possibly from an imaginary surface.
For a jet plume interacting with the external flow, the
choice and definition of the surface becomes nebulous.

Mach number contours for the jet exhaust plume are
presented in figure 28 for the vertical and horizontal

planes of symmetry. Portions of the afterbody flow,
internal flow, and jet exhaust plume (grid blocks 2, 4,
and 3, respectively) are visible. The contours are given
only for the Jones-Launderk-ε turbulence model. The
Mach number contours illustrate the pattern of the expan-
sion and compression cells in the aft section of the nozzle
and the forward part of the exhaust plume. They also
illustrate the accompanying local expansions and con-
tractions of the plume itself. In addition, the overall
spreading of the shear layer between the plume and the
external flow clearly can be seen.

Figure 29 presents profiles of the ratio of the pitot
pressure to the free-stream total pressure at four circum-
ferential angles and three axial stations in the jet exhaust
plume. The profiles atφ = 0°° are in the vertical plane of
symmetry, those atφ Å≈ 25°° are in a plane that cuts
through the top surface of the nozzle, those atφ Å≈ 65°°° are
in a plane that intersects the nozzle at approximately the
corner, and those atφ = 90°° are in the horizontal plane of
symmetry. The radial location of the nozzle exit (i.e.,
nozzle lip line) is indicated in figure 29. Available corre-
sponding experimental data are included.

At the jet exit (x/L = 1.000), there are relatively
minor differences between the profiles of the two turbu-
lence models. The profiles are identical to the boundary
layer profiles at the jet exit. Except for an apparent shift
in the radial location of the profiles at the nozzle exit
(i.e., the computed jet core extends farther out than the
experimental core), they match the experimental data
extremely well. Lack of modeling the nozzle base model
possibly could cause the apparent shift. However, the
nozzle base was modeled. Therefore, the shift was proba-
bly due to an error in the measurement of the location of
the experimental rake. Except for the shift, both turbu-
lence models predict the total pressure losses near the
surface of the model well. The effect of the relatively
large base of the nozzle atφ = 90°° clearly appears in the
profile.

At the downstream stations (x/L ≈ 1.081 and 1.162),
the profiles indicate that the mixing between the exhaust
plume and the external flow was underpredicted. Besides
producing a plume that is not exactly correct, the defi-
ciency in mixing may alter the influence of the jet plume
on the afterbody flow.

The discrepancy between the computed profiles and
experimental data seems to be significantly greater at
φ ≈ 65°° than at other circumferential angles. At this
angle, the discrepancy also seems to be growing as the
distance downstream of the jet exit increases. As men-
tioned previously, a plane in this circumferential angle
intersects the rectangularly shaped nozzle close to its
corner. The relatively poor agreement atφ Å≈ 65°° could be
due to the grid topology, which is an O type in the
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cross-flow plane but is generally a rectangular shape in
the vicinity of the plume from the nozzle lip to the out-
flow boundary. This topology may not allow accurate
resolution of the viscous terms in the corners.

Also, the poor agreement could be due to the turbu-
lence model. The standard Jones-Launderk-ε turbulence
model used in this investigation is linear. Reference 22
indicates that, although cross-flow vortices in the corners
of internal ducts develop as they should when a nonlinear
k-ε turbulence model is utilized, they do not develop at
all for a lineark-ε model. Therefore, the linear model
used in this investigation failed to develop any of the
cross-flow vortices that would be present. Because cross-
flow vortices would enhance mixing between the jet
plume and external flow, the linear model should under-
predict the mixing, as it does. Although this effect would
be most noticeable atφ ≈ 65°, a secondary effect on the
mixing could occur at other circumferential angles.1

Solutions, which predicted a higher mixing rate and
agree much better with experimental data, have been
obtained. (See ref.16, for example.) In reference 16,
these improved results were obtained by a standard
Jones-Launderk-ε turbulence model with vortex-
stretching and compressible-dissipation extensions. In
this paper, no effort was made to tune the standard Jones-
Launder k-ε turbulence model to increase mixing
because the objective of the investigation was to evaluate
the performance of the turbulence models without adjust-
ment to any set of data.

Nozzle-Afterbody Drag

Often, the goal of computational fluid dynamics is to
predict the performance characteristics of a new airplane
or component. Figure 30 presents the buildup of the com-
puted afterbody-drag coefficient for the external surface
of the nozzle. Here, drag buildup is defined as the accu-
mulated drag integrated with respect to axial distance
from model stationx/L = 0.88. Figure 30 presents the
pressure drag, the skin-friction drag, and the total-drag
coefficients for both turbulence models. The total drag is

1Several different grids (table I) in the plume were investigated
to determine any grid effect on the mixing between the plume and
the external flow. Initially, block 3 (57× 53 × 153) was tested
downstream of the nozzle exit. While the number of radial grid
planes was held constant, the radial spacing of the grid in the vicin-
ity of the plume was adjusted in several steps. Finally, more axial
grid planes were added, and the axial spacing was changed, which
resulted in block 3(a) (81× 53 × 153) downstream of the exit. New
solutions were obtained at each intermediate step. These modifica-
tions to the grid produced a negligible effect on the solution. Al-
though no noticeable improvement was obtained by the change in
the grid, all the results presented atM∞ = 0.600 were computed
with block 3(a) downstream of the exit.

the combined skin-friction and pressure drags. The refer-
ence area used for computing the drag coefficient was the
maximum cross-sectional area of the model. Unfortu-
nately, no experimental drag data are available that could
be used to validate the current computational predictions.

As expected, the pressure-drag coefficient builds up
when the afterbody pressure coefficient is negative and
decreases when the pressure coefficient is positive.
(Compare the drag coefficient buildup with the pressure
coefficient distributions in figs. 12 and 23.) Conversely,
the skin-friction drag increases when the skin-friction
coefficient is positive and decreases when it is negative.

At M∞ = 0.600 (fig. 30(a)), the external flow is
essentially attached, and the major difference in the drag
between the two turbulence models stems from the dif-
ferences in skin friction. At this condition, the Jones-
Launder k-ε turbulence model gives approximately
50percent higher friction drag, which also results in
higher total drag.

At M∞ = 0.600, the pressure-drag coefficient buildup
for the two turbulence models are virtually the same over
the initial part of the boattail. However, as the drag
builds up, the Baldwin-Lomax model does result in
slightly more drag than the Jones-Launderk-ε model.
The pressure distributions for the external surface, as dis-
cussed previously (fig. 12), show a very slight difference
in the pressures for the two turbulence models on the ini-
tial part of the boattail where the flow is accelerating and
show a seemingly insignificant difference on the aft part
of the boattail where the flow is compressing. The differ-
ence between drag results of the two turbulence models,
although small, illustrates that seemingly insignificant
differences in the predicted pressures can result in signif-
icant differences in the integrated drag.

At M∞ = 0.938 (fig. 30(b)), the results for the skin-
friction-drag coefficient buildup are similar to the results
at M∞ = 0.600. However, the differences between the
pressure drag buildup of the two turbulence models
reflect the substantial differences between the model
shock location and pressure level predictions in the sepa-
rated region. For transonic massively separated flow, the
difference in the pressure-drag coefficient predictions
overwhelms any difference due to skin-friction-drag
coefficient predictions. The Jones-Launderk-ε turbu-
lence model results in a higher drag than that of the
Baldwin-Lomax model.

Although the buildups of the drag coefficient are dif-
ferent for the two turbulence models, the integrated drag
coefficients predicted by each turbulence model for the
entire nozzle are close to the same value. However, this
result is just a coincidence. The potential for a large
difference between predicted drag coefficients of the two
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turbulence models exists (e.g., if the configuration hap-
pened to be truncated atx/L = 0.97).

Good performance predictions have been obtained
for nozzles with relatively mild surface curvature and
mildly accelerating attached flow. (See ref.25.) How-
ever, the differences between the drag coefficient build-
ups of the two turbulence models illustrate that
substantial development is still required for computing
very complex flows before nozzle performance can be
accurately predicted for all flow conditions.

Current research efforts include implementation and
evaluation of more advanced turbulence models such as
explicit algebraic Reynolds stress models. Preliminary
results show that the algebraic Reynolds stress model
substantially improves the prediction of the pressure
level in the separated region behind the shock atM∞ =
0.938. However, the algebraic stress model fails to
improve the overall prediction of the shock location for
this test configuration. These preliminary results imply
that further improvements in the algebraic stress models,
or even more advanced turbulence models such as full
Reynolds stress models, may be necessary to adequately
predict performance.

Concluding Remarks

A numerical investigation was conducted to assess
the accuracy of turbulence models for computing non-
axisymmetric nozzle-afterbody flows with propulsive
jets. Navier-Stokes solutions were obtained for a conver-
gent-divergent nonaxisymmetric nozzle-afterbody and its
associated jet exhaust plume at free-stream Mach num-
bers of 0.600 and 0.938 at an angle of attack of 0°. The
Reynolds number based on model length was approxi-
mately 20 × 106. The nozzle pressure ratio was 4.0,
which is close to the design value of 4.25. Turbulent dis-
sipation was modeled by the standard Jones-Launderk-ε
turbulence model and by the Baldwin-Lomax algebraic
turbulence model with the Degani-Schiff modification.
The results were compared with experimental data.

At flow conditions with little or no flow separation
and no strong shocks (e.g., external flow at low subsonic
speeds or internal nozzle flow at a nozzle pressure ratio
close to design), both turbulence models predicted the
pressures on the surfaces of the nozzle very well, as was
expected. The computed nozzle base pressures also
agreed very well with the experimental data, particularly,
where the base was thick and the nozzle boattail angle
was small. When the flow was attached, the Jones-
Launderk-ε turbulence model usually predicted a value
of skin friction approximately 20 percent higher than the
Baldwin-Lomax model predicted.

At transonic speeds, strong shocks and massive sep-
aration existed on the external surface. Downstream of
the shock-induced separation point, both turbulence
models were unable to predict the flow reliably. The
Jones-Launder, two-equation,k-ε turbulence model gen-
erally predicted the pressure level in the separated region
better than the Baldwin-Lomax algebraic turbulence
model did. The Baldwin-Lomax model predicted the
shock location farther upstream than the Jones-Launder
k-ε model did and seemed to agree slightly better with
the experimental data in this respect. Although neither
turbulence model provided entirely satisfactory results
for this separated flow, the Jones-Launderk-ε turbulence
model predicted the base pressures better and seemed to
predict the overall trends of the pressure distributions
better.

The Jones-Launderk-ε turbulence model predicted a
less extensive separated region than the Baldwin-Lomax
model did for transonic flow. Separation was confined to
the top and bottom of the nozzle for the Jones-Launder
k-ε turbulence model. With the Baldwin-Lomax turbu-
lence model, the separation extended partway down the
sides of the nozzle, was approximately twice as thick at
the trailing edge, and had a backflow speed in the sepa-
rated region that was approximately two and a half times
the speed predicted by the Jones-Launderk-ε turbulence
model. Unlike the Jones-Launderk-ε turbulence model
solution, the Baldwin-Lomax model solution failed to
converge to a steady state at the high transonic Mach
number.

Mixing between the exhaust plume and the external
flow was underpredicted. The discrepancy between the
computed pitot-pressure profiles and experimental data
was significantly greater in a plane that intersected the
nozzle approximately at its corner. Possible reasons for
this discrepancy may be the effects of an O-type grid and
failure of the standard Jones-Launderk-ε model to pre-
dict cross-flow vortices.

The differences between the drag coefficients pre-
dicted by the two turbulence models illustrate that sub-
stantial development is still required for computing very
complex flows (e.g., flows with massive shock-induced
separation) before nozzle performance can be predicted
reliably, particularly at transonic speeds.

Current and future research efforts include imple-
mentation and evaluation of more advanced turbulence
models such as explicit algebraic Reynolds stress models
and full Reynolds stress models.

NASA Langley Research Center
Hampton, VA 23681-0001
April 23, 1996
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Appendix A

Governing Equations

The Navier-Stokes equations mathematically model the physical laws governing the motion of a compressible fluid
with dissipation. In PAB3D, the three-dimensional, time-dependent, Reynolds-averaged, Navier-Stokes equations are
written in strong conservation form for aCartesian coordinate system (x, y, z). Body forces are assumed to play an insig-
nificant role in the afterbody flow problem and are neglected. Because the dominant dissipative effects for most aerody-
namic problems arise mainly from diffusion normal to the main flow direction, only those diffusion terms normal to the
generalized coordinate most nearly aligned with the free stream are retained. The resulting time-dependent equations for
conservation of mass, linear momentum, and energy can be expressed in terms of a fixed generalized coordinate system

 as
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where

(A4)

Here and later in the discussion,i, j, andk represent thex, y, andz components, respectively. In these equations,ρ is
the density;u, v, andw are the velocity components in thex, y, andz directions, respectively;e is the total energy per
unit volume; andp is the pressure. The relations between energy, pressure, and enthalpy for an ideal gas complete the
system of equations.

The viscous stresses are assumed to be composed of a laminar component and a turbulent component (e.g.,
). The laminar stresses  are expressed as

The expressions for the turbulent stresses  are described in the main body of the paper.
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Appendix B

Mathematical Description of Model

External Geometry

The model, which was 63.04 in. long, consisted of a generic forebody with a nonaxisymmetric convergent-divergent
nozzle attached. The model had a conical nose that blended smoothly into a superelliptical cross section at model station
26.50 in. This cross section was nearly rectangular with rounded corners. The external geometry then remained constant
to fuselage station 55.05 in. where the nozzle connected to the forebody. The following equations define the external
geometry up to this point:

(B1)

whereη is the circumferential angle.

Fromx = 0 tox = 6.010 in.,

(B2)

Fromx = 6.010 tox = 26.50 in.,

(B3)

Fromx = 26.50 tox = 55.05 in.,

(B4)

Fromx = 55.05 tox = 63.04 in. is the nozzle.

Model station 55.05 in. is the nozzle connect station. Details of the nonaxisymmetric convergent-divergent nozzle
are given in figure 4. The external cross-sectional geometry varied from the superellipse at the nozzle connect station to
essentially a rectangle with superelliptical corners at the nozzle exit. The equation defining the external cross-sectional
geometry of the nozzle is

(B5)

where  andβ are given in figure 4(b) as functions ofx.
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Internal Transition Section Geometry

The internal geometry of the model varied from a circular cross section at the instrumentation section (fig. 3) to a
rectangular cross section at the nozzle connect station (model station 55.05 in.). The transition section provided a
smooth constant-area transition between the instrumentation section and the nozzle by means of a superelliptical cross
section. The equations for the semimajor axis, the semiminor axis, and the exponent of the superellipse for the transition
section are

Fromx = 49.90 tox = 52.87 in.,

(B6)

where

and the cross-sectional area of the transition section is 19.2442185 in2.

Fromx = 52.87 tox = 55.05 in., the internal cross section of the transition section was a rectangle with a semiwidth
of 2.475 in. and a semiheight of 1.944 in. Ahead of model station 49.90 in., the cross section was circular with a diame-
ter of 2.475 in.
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a.Block 3(a) is a substitute for block 3 with a modified grid distribution and density.

Table I. Block Structure and Mesh Density for Computational Grid

Number of grid planes in direction—

Block Location Topology
i

(streamwise)
j

(circumferential)
k

(radial)
1 Upstream H-O 25 53 77
2 Model external H-O 113 53 77
3 Downstream H-O 57 53 153

a3(a) Downstream H-O 81 53 153
4 Nozzle internal H-O 89 53 49
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Table II. Experimental Surface Pressures

External surface Internal surface
Cp for— p/p

t,j
for—

Row x, in.
M∞ = 0.600;
NPR = 4.003

M∞ = 0.938;
NPR = 4.017 Row x, in.

M∞ = 0.600;
NPR = 4.003

M∞ = 0.938;
NPR = 4.017

1 55.180 −0.1744 −0.1127 6 55.800 0.9572 0.9598
1 55.800 −.2654 −.2056 6 56.730 .8677 .8645
1 57.040 −.3833 −.5296 6 57.223 .2527 .2505
1 57.660 −.3566 −.4815 6 58.280 .4113 .4128
1 58.280 −.2762 −.1606 6 60.140 .3436 .3434
1 58.900 −.1587 −.1166 6 62.620 .2447 .2411
1 59.520 −.0466 −.1081
1 60.140 .0244 −.1014 7 58.280 .4216 .4232
1 61.380 .1143 −.0719 7 60.140 .3262 .3267
1 62.620 .1743 −.0101 7 62.620 .2594 .2589
1 Base .1653 .0479

8 57.223 .2549 .2540
2 55.800 −.2333 −.1901 8 58.280 .4137 .4163
2 58.280 −.2677 −.1775 8 60.140 .3255 .3259
2 59.520 −.0580 −.1201 8 62.620 .2600 .2598
2 61.380 .0947 −.0768

9 57.223 .6031 .5754
3 55.800 −.1767 −.1682 9 58.280 .3075 .3022
3 56.420 −.2215 −.2715 9 60.140 .2839 .2842
3 57.040 −.2500 −.3898 9 62.620 .2429 .2400
3 58.280 −.2863 −.4545
3 59.520 −.2078 −.1431
3 61.380 .0129 −.1535
3 62.620 .1090 .0063
3 Base −.0583 −.0296

4 57.040 −.2225 −.4547
4 58.280 −.1514 −.4009
4 59.520 −.1716 −.1416
4 61.380 .0267 −.0072

5 55.180 −.1271 −.0952
5 55.800 −.2104 −.2005
5 56.420 −.2798 −.4026
5 57.040 −.2256 −.5292
5 58.280 −.1120 −.3812
5 59.520 −.0640 −.1498
5 61.380 .0201 .0068
5 62.610 .0383 .0300
5 Base −.0293 .0023
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Table III. Jet Exhaust Plume Experimental Data

[Excerpted from ref. 21]

(a)

x, in. y, in. z, in. r, in. φ, deg ppitot/pt,°∞
62.86787 −0.14663 0.11929 0.19 −50.87 2.749
62.86963 −.11207 .21021 .24 −28.06 2.749
62.87138 −.06327 .31391 .32 −11.40 2.750
62.86963 −.03476 .41355 .42 −4.80 2.760
62.86787 .00097 .50754 .51 .11 2.848
62.86787 .03104 .58665 .59 3.03 2.855
62.86963 .06561 .67758 .68 5.53 2.861
62.87138 .12354 .77770 .79 9.03 2.863
62.86963 .14291 .88092 .89 9.21 2.862
62.86787 .17865 .97491 .99 10.38 2.851
62.86787 .20872 1.05402 1.07 11.20 2.749
62.86963 .24329 1.14494 1.17 12.00 1.521
62.87138 .31036 1.24148 1.28 14.04 .831
62.86963 .32059 1.34828 1.39 13.38 .835
62.86787 .35632 1.44228 1.49 13.88 .846
62.86787 .38640 1.52139 1.57 14.25 .864
62.86963 .42097 1.61231 1.67 14.63 .879
62.87138 .49718 1.70527 1.78 16.25 .900
62.86963 .49827 1.81565 1.88 15.35 .915
62.86787 .53400 1.90964 1.98 15.62 .926
62.86787 .56408 1.98875 2.07 15.84 .940
62.86963 .59864 2.07967 2.16 16.06 .950
62.87138 .68400 2.16906 2.27 17.50 .960
62.86963 .67595 2.28301 2.38 16.49 .968
62.86787 .71168 2.37701 2.48 16.67 .978
62.86787 .74176 2.45612 2.57 16.80 .986
62.86963 .77632 2.54704 2.66 16.95 .991
62.87138 .87082 2.63285 2.77 18.30 .994
62.86963 .85363 2.75038 2.88 17.24 .996
62.86787 .88936 2.84437 2.98 17.36 .996
62.86436 .91718 2.91755 3.06 17.45 .995
62.86963 .95400 3.01440 3.16 17.56 .995
62.86085 .98958 3.10799 3.26 17.66 .994
62.86963 1.03130 3.21774 3.38 17.77 .995
62.86787 1.06703 3.31174 3.48 17.86 .994
62.86436 1.09486 3.38492 3.56 17.92 .996
62.86085 1.13759 3.49734 3.68 18.02 .996
62.86085 1.16726 3.57536 3.76 18.08 .996
62.84679 1.20486 3.67427 3.87 18.16 .996
62.86436 1.27253 3.85228 4.06 18.28 .995
62.86085 1.31527 3.96470 4.18 18.35 .995
62.86085 1.34493 4.04272 4.26 18.40 .996
62.84679 1.38253 4.14163 4.37 18.46 .995
62.86436 1.45021 4.31965 4.56 18.56 .994

x/L 1.00;φ 15°≈≈
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Table III. Continued

(b)

x, in. y, in. z, in. r, in. φ, deg ppitot/pt,°∞
62.86787 0.01625 0.00331 0.02 78.49 2.726
62.86787 .07965 .03984 .09 63.43 2.727
62.86436 .15560 .07444 .17 64.43 2.728
62.86436 .25201 .11805 .28 64.90 2.731
62.85558 .35081 .16275 .39 65.11 2.736
62.86787 .43930 .20278 .48 65.22 2.731
62.86787 .53533 .24563 .59 65.35 2.739
62.86436 .61116 .28053 .67 65.34 2.752
62.86436 .70756 .32414 .78 65.39 2.762
62.85558 .80636 .36883 .89 65.42 2.793
62.86787 .89485 .40887 .98 65.44 2.841
62.86787 .99102 .45142 1.09 65.51 2.839
62.86436 1.06671 .48661 1.17 65.48 2.836
62.86436 1.16312 .53022 1.28 65.49 2.831
62.85558 1.26192 .57492 1.39 65.51 2.829
62.86787 1.35041 .61495 1.48 65.52 2.828
62.86787 1.44670 .65721 1.59 65.57 2.829
62.86436 1.52226 .69270 1.67 65.53 2.829
62.86436 1.61867 .73631 1.78 65.54 2.832
62.85558 1.71747 .78100 1.89 65.55 2.831
62.86787 1.80596 .82103 1.98 65.55 2.827
62.86787 1.90239 .86301 2.09 65.60 2.820
62.86436 1.97782 .89878 2.17 65.56 2.816
62.86436 2.07422 .94239 2.28 65.57 2.814
62.85558 2.17303 .98709 2.39 65.57 2.803
62.86787 2.26151 1.02712 2.48 65.57 2.769
62.86787 2.35807 1.06880 2.59 65.62 2.724
62.86436 2.43337 1.10486 2.67 65.58 2.637
62.86436 2.52978 1.14848 2.78 65.58 1.264
62.85558 2.62858 1.19317 2.89 65.59 .852
62.86787 2.71707 1.23320 2.98 65.59 .863
62.86787 2.81376 1.27459 3.09 65.63 .898
62.86436 2.88892 1.31095 3.17 65.59 .921
62.86436 2.98533 1.35456 3.28 65.59 .948
62.85558 3.08413 1.39926 3.39 65.60 .969
62.82747 3.17942 1.44236 3.49 65.60 .985
62.82396 3.25929 1.47309 3.58 65.68 .992
62.81693 3.36242 1.52097 3.69 65.66 .996
62.81518 3.44562 1.55709 3.78 65.68 .996
62.82747 3.63497 1.64845 3.99 65.61 .998
62.82396 3.71510 1.67859 4.08 65.69 .998
62.81693 3.81817 1.72662 4.19 65.67 .998
62.81518 3.90144 1.76259 4.28 65.69 .998
62.82747 4.09052 1.85453 4.49 65.61 .997

x/L 1.00;φ 66°≈≈
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Table III. Continued

(c)

x, in. y, in. z, in. r, in. φ, deg ppitot/pt,°∞
68.11902 −0.23782 0.12131 0.27 −62.97 2.633
68.08737 −.24150 .23168 .33 −46.19 2.635
68.07683 −.24617 .43014 .50 −29.78 2.662
68.08210 −.24166 .54991 .60 −23.72 2.681
68.11902 −.25547 .62100 .67 −22.36 2.725
68.08737 −.25884 .73138 .78 −19.49 2.725
68.07683 −.26141 .92991 .97 −15.70 2.489
68.08210 −.25063 1.04983 1.08 −13.43 2.242
68.11902 −.27313 1.12069 1.15 −13.70 1.670
68.08737 −.27617 1.23108 1.26 −12.64 1.460
68.07683 −.27665 1.42968 1.46 −10.95 1.110
68.08210 −.25960 1.54975 1.57 −9.51 1.027
68.11902 −.29078 1.62038 1.65 −10.17 .965
68.08737 −.29350 1.73078 1.76 −9.62 .965
68.07683 −.29189 1.92944 1.95 −8.60 .977
68.08210 −.26857 2.04967 2.07 −7.46 .987
68.11902 −.30844 2.12006 2.14 −8.28 .994
68.08737 −.31083 2.23048 2.25 −7.93 .997
68.07683 −.30714 2.42921 2.45 −7.21 .997
68.08210 −.27754 2.54958 2.56 −6.21 .997
68.11902 −.32609 2.61975 2.64 −7.10 .997
68.08737 −.32816 2.73018 2.75 −6.85 .998
68.07683 −.32238 2.92898 2.95 −6.28 .998
68.08210 −.28650 3.04950 3.06 −5.37 .998
68.11902 −.34374 3.11944 3.14 −6.29 .999
68.08737 −.34549 3.22988 3.25 −6.11 .999
68.07683 −.34108 3.32526 3.34 −5.86 .996
68.07683 −.33762 3.42875 3.45 −5.62 .998
68.08210 −.29547 3.54942 3.56 −4.76 .997
68.07683 −.36029 3.65654 3.67 −5.63 .997
68.07683 −.36566 3.73987 3.76 −5.58 .997
68.07683 −.36270 3.76169 3.78 −5.51 .996
68.07683 −.35729 3.82500 3.84 −5.34 .996
68.07683 −.30494 3.93220 3.94 −4.43 .998
68.07683 −.37762 4.15624 4.17 −5.19 .997
68.07683 −.38332 4.23956 4.26 −5.17 .998
68.07683 −.37987 4.26139 4.28 −5.09 .998
68.07683 −.37349 4.32474 4.34 −4.94 .998
68.07683 −.31423 4.43211 4.44 −4.06 .997
68.07683 −.39495 4.65593 4.67 −4.85 .999

x/L 1.08;φ 7°–≈≈
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Table III. Continued

(d)

x, in. y, in. z, in. r, in. φ, deg ppitot/pt,°∞

68.18931 −0.11589 0.09895 0.15 −49.51 2.633
68.18931 −.06324 .19074 .20 −18.34 2.640
68.18578 −.01333 .27805 .28 −2.74 2.652
68.18578 .04256 .37555 .38 6.47 2.668
68.18578 .08327 .44617 .45 10.57 2.679
68.18931 .13288 .53267 .55 14.01 2.717
68.18931 .18553 .62446 .65 16.55 2.733
68.18578 .23530 .71185 .75 18.29 2.722
68.18578 .29119 .80935 .86 19.79 2.610
68.18578 .33204 .8799 .94 20.67 2.517
68.18931 .38165 .96639 1.04 21.55 2.035
68.18931 .43430 1.05818 1.14 22.31 1.755
68.18578 .48393 1.14565 1.24 22.90 1.531
68.18578 .53982 1.24316 1.36 23.47 1.281
68.18578 .58081 1.31362 1.44 23.85 1.201
68.18931 .63041 1.40011 1.54 24.24 1.021
68.18931 .68307 1.49191 1.64 24.60 .980
68.18578 .73256 1.57945 1.74 24.88 .965
68.18578 .78845 1.67696 1.85 25.18 .963
68.18578 .82957 1.74734 1.93 25.40 .965
68.18931 .87918 1.83383 2.03 25.61 .975
68.18931 .93183 1.92563 2.14 25.82 .983
68.18578 .98119 2.01325 2.24 25.98 .989
68.18578 1.03708 2.11076 2.35 26.17 .993
68.18578 1.07834 2.18106 2.43 26.31 .996
68.18931 1.12795 2.26755 2.53 26.45 .997
68.18931 1.18060 2.35935 2.64 26.58 .997
68.18578 1.22982 2.44705 2.74 26.68 .997
68.18578 1.28570 2.54456 2.85 26.81 .997
68.18578 1.32711 2.61478 2.93 26.91 .997
68.18931 1.37672 2.70127 3.03 27.01 .999
68.18931 1.42937 2.79307 3.14 27.10 1.000
68.18578 1.47845 2.88085 3.24 27.17 .999
68.18578 1.53433 2.97836 3.35 27.26 .999
68.18578 1.57588 3.04850 3.43 27.34 .999
68.18578 1.61921 3.12405 3.52 27.40 .997
68.18578 1.68625 3.24093 3.65 27.49 .997
68.18403 1.72386 3.30650 3.73 27.54 .997
68.18228 1.79758 3.40361 3.85 27.84 .997
68.18578 1.86798 3.55777 4.02 27.70 .998
68.18578 1.93502 3.67465 4.15 27.77 .998
68.18403 1.97263 3.74022 4.23 27.81 .998
68.18228 2.04802 3.83637 4.35 28.10 .998
68.18578 2.11675 3.99149 4.52 27.94 1.000

x/L 1.08;φ 26°≈≈



29

Table III. Continued

(e)

x, in. y, in. z, in. r, in. φ, deg ppitot/pt,°∞
68.18931 −0.02583 −0.00606 0.03 256.80 2.642
68.18578 .08165 .04339 .09 62.01 2.645
68.18578 .16824 .08323 .19 63.68 2.651
68.18578 .26557 .12801 .29 64.27 2.661
68.19107 .33713 .16115 .37 64.45 2.668
68.18931 .42840 .20292 .47 64.65 2.678
68.18578 .53588 .25237 .59 64.78 2.687
68.18578 .62247 .29221 .69 64.85 2.696
68.18578 .71980 .33699 .79 64.91 2.708
68.19107 .79129 .37029 .87 64.92 2.715
68.18931 .88263 .41191 .97 64.98 2.739
68.18578 .99010 .46136 1.09 65.02 2.744
68.18578 1.07670 .50120 1.19 65.04 2.751
68.18578 1.17403 .54598 1.29 65.06 2.756
68.19107 1.24545 .57942 1.37 65.05 2.757
68.18931 1.33686 .62090 1.47 65.09 2.708
68.18578 1.44434 .67035 1.59 65.10 2.673
68.18578 1.53093 .71019 1.69 65.11 2.637
68.18578 1.62826 .75497 1.79 65.12 2.562
68.19107 1.69962 .78855 1.87 65.11 2.505
68.18931 1.79109 .82988 1.97 65.14 2.250
68.18578 1.89856 .87933 2.09 65.15 2.097
68.18578 1.98515 .91917 2.19 65.15 1.978
68.18578 2.08249 .96395 2.29 65.16 1.811
68.19107 2.15378 .99768 2.37 65.15 1.713
68.18931 2.24532 1.03887 2.47 65.17 1.382
68.18578 2.35279 1.08832 2.59 65.18 1.260
68.18578 2.43938 1.12816 2.69 65.18 1.184
68.18578 2.53672 1.17294 2.79 65.18 1.097
68.19107 2.60794 1.20682 2.87 65.17 1.063
68.18931 2.69955 1.24786 2.97 65.19 .988
68.18578 2.80702 1.29731 3.09 65.20 .980
68.18578 2.89361 1.33715 3.19 65.20 .979
68.18578 2.99094 1.38193 3.29 65.20 .988
68.19107 3.06210 1.41595 3.37 65.18 .993
68.18931 3.26117 1.48724 3.58 65.48 .999
68.18931 3.36916 1.51959 3.70 65.72 .997
68.18931 3.45923 1.52740 3.78 66.18 .997
68.18931 3.71633 1.69418 4.08 65.49 .998
68.18931 3.82513 1.72477 4.20 65.73 .999
68.18931 3.91670 1.72920 4.28 66.18 .998

x/L 1.08;φ 65°≈≈
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Table III. Continued

(f)

x, in. y, in. z, in. r, in. φ, deg ppitot/pt,°∞
68.18931 0.00000 −0.10007 0.10 180.00 2.653
68.18931 .12488 −.10011 .16 128.72 2.657
68.18931 .22546 −.10015 .25 113.95 2.660
68.18931 .31616 −.10018 .33 107.58 2.662
68.18931 .39964 −.10020 .41 104.08 2.663
68.18931 .50000 −.10024 .51 101.34 2.665
68.18931 .62488 −.10027 .63 99.12 2.668
68.18931 .72546 −.10031 .73 97.87 2.669
68.18931 .81617 −.10034 .82 97.01 2.675
68.18931 .89964 −.10036 .91 96.37 2.678
68.18931 1.00000 −.10040 1.01     95.73 2.697
68.18931 1.12488 −.10044 1.13  95.10 2.707
68.18931 1.22546 −.10047 1.23 94.69 2.714
68.18931 1.31616 −.10050 1.32 94.37 2.722
68.18931 1.39964 −.10052 1.40 94.11 2.728
68.18931 1.50000 −.10056 1.50 93.84 2.747
68.18931 1.62488 −.10060 1.63 93.54 2.752
68.18931 1.72546 −.10063 1.73 93.34 2.758
68.18931 1.81616 −.10066 1.82 93.17 2.762
68.18931 1.89964 −.10068 1.90 93.03 2.729
68.18931 2.00000 −.10072 2.00 92.88 2.452
68.18931 2.12488 −.10076 2.13   92.71 2.052
68.18931 2.22546 −.10079 2.23 92.59 1.687
68.18931 2.31616 −.10082 2.32 92.49 1.393
68.18931 2.39964 −.10085 2.40 92.41 1.235
68.18931 2.50000 −.10088 2.50 92.31 1.042
68.18931 2.62488 −.10092 2.63 92.20 .972
68.18931 2.72546 −.10095 2.73 92.12 .958
68.18931 2.81616 −.10098 2.82 92.05 .966
68.18931 2.89964 −.10101 2.90 92.00 .972
68.19107 3.00908 −.10104 3.01 91.92 .982
68.18931 3.11293 −.10107 3.11 91.86 .989
68.18931 3.20890 −.10111 3.21 91.80 .995
68.18931 3.30223 −.10114 3.30 91.75 .996
68.18931 3.39964 −.10117 3.40 91.70 .999
68.19107 3.50908 −.10120 3.51 91.65 .997
68.18931 3.61293 −.10124 3.61 91.61 .997
68.18931 3.70890 −.10127 3.71 91.56 .997
68.18931 3.80223 −.10130 3.80 91.53 .997
68.19107 4.00908 −.10136 4.01 91.45 .998
68.18931 4.11293 −.10140 4.11 91.41 .998
68.18931 4.20890 −.10143 4.21 91.38 .998
68.18931 4.30223 −.10146 4.30 91.35 .998
68.19107 4.50908 −.10152 4.51 91.29 1.000

x/L 1.08;φ 92°≈≈
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Table III. Continued

(g)

x, in. y, in. z, in. r, in. φ, deg ppitot/pt,°∞
73.22530 −0.23118 0.14183 0.27 −58.47 2.695
73.22530 −.23168 .24435 .34 −43.48 2.706
73.22706 −.24094 .32965 .41 −36.16 2.717
73.22706 −.24339 .42557 .49 −29.77 2.719
73.22706 −.23311 .53942 .59 −23.37 2.706
73.22530 −.23361 .64182 .68 −20.00 2.641
73.22530 −.23411 .74434 .78 −17.46 2.565
73.22706 −.25367 .82948 .87 −17.00 2.459
73.22706 −.25612 .92540 .96 −15.47 2.302
73.22706 −.23555 1.03942 1.07 −12.77 2.122
73.22530 −.23605 1.14181 1.17 −11.68  1.846
73.22530 −.23654 1.24433 1.27 −10.76  1.700
73.22706 −.26641 1.32932 1.36 −11.33  1.566
73.22706 −.26885 1.42524 1.45 −10.68  1.430
73.22706 −.23798 1.53941 1.56 −8.79  1.306
73.22530 −.23848 1.64181 1.66 −8.26 1.155
73.22530 −.23898 1.74433 1.76 −7.80 1.099
73.22706 −.27914 1.82916 1.85 −8.68 1.055
73.22706 −.28158 1.92508 1.95 −8.32 1.023
73.22706 −.24042 2.03941 2.05 −6.72 1.003
73.22530 −.24092 2.14180 2.16 −6.42 .998
73.22530 −.24141 2.24432 2.26 −6.14 .998
73.22706 −.29187 2.32900 2.35 −7.14 .999
73.22706 −.29431 2.42492 2.44 −6.92 .999
73.22706 −.24285 2.53940 2.55 −5.46 .998
73.22530 −.24335 2.64180 2.65 −5.26 .999
73.22530 −.24385 2.74432 2.76 −5.08 .999
73.22706 −.30460 2.82884 2.85 −6.15 .999
73.22706 −.30704 2.92476 2.94 −5.99 .999
73.22706 −.24528 3.03939 3.05 −4.61 .998
73.22530 −.23740 3.12678 3.14 −4.34 .996
73.22530 −.21191 3.23189 3.24 −3.75 .998
73.22530 −.24453 3.33837 3.35 −4.19 .998
73.22530 −.24725 3.44220 3.45 −4.11 .998
73.22706 −.24772 3.53939 3.55 −4.00 .999
73.22530 −.23855 3.62678 3.63 −3.76 .998
73.22530 −.20919 3.73188 3.74 −3.21 .998
73.22530 −.24664 3.83837 3.85 −3.68 .998
73.22530 −.24968 3.94219 3.95 −3.62 .998
73.22530 −.23970 4.12678 4.13 −3.32 .995
73.22530 −.20648 4.23188 4.24 −2.79 .995
73.22530 −.24875 4.33836 4.35 −3.28 .995
73.22530 −.25211 4.44219 4.45 −3.25 .995
73.22530 −.24084 4.62678 4.63 −2.98 .996

x/L 1.16;φ 5°–≈≈
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Table III. Continued

(h)

x, in. y, in. z, in. r, in. φ, deg ppitot/pt,°∞
73.22706 −0.11425 0.11233 0.16 −45.49 2.686
73.22530 −.06428 .20260 .21 −17.60 2.702
73.22706 −.01150 .29057 .29 −2.27 2.71
73.22530 .03362 .37301 .37 5.15 2.718
73.22882 .07093 .46493 .47 8.67 2.714
73.22706 .12507 .55133 .57 12.78 2.669
73.22530 .17589 .64114 .66 15.34 2.629
73.22706 .23261 .72693 .76 17.74 2.558
73.22530 .27703 .80976 .86 18.89 2.451
73.22882 .30601 .90623 .96 18.66 2.326
73.22706 .36440 .99034 1.06 20.20 2.055
73.22530 .41606 1.07968 1.16 21.07 1.917
73.22706 .47672 1.16329 1.26 22.28 1.773
73.22530 .52044 1.24651 1.35 22.66 1.626
73.22882 .54108 1.34752 1.45 21.88 1.501
73.22706 .60372 1.42934 1.55 22.90 1.307
73.22530 .65623 1.51822 1.65 23.38 1.227
73.22706 .72083 1.59964 1.75 24.26 1.158
73.22530 .76385 1.68326 1.85 24.41 1.096
73.22882 .77616 1.78881 1.95 23.46 1.052
73.22706 .84304 1.86834 2.05 24.29 1.013
73.22530 .89640 1.95676 2.15 24.61 1.003
73.22706 .96495 2.03600 2.25 25.36 .998
73.22530 1.00726 2.12001 2.35 25.41 .997
73.22882 1.01123 2.23011 2.45 24.39 .999
73.22706 1.08237 2.30735 2.55 25.13 .998
73.22530 1.13657 2.39530 2.65 25.38 .998
73.22706 1.20906 2.47236 2.75 26.06 .998
73.22530 1.25067 2.55676 2.85 26.07 .999
73.22882 1.24630 2.67140 2.95 25.01 .999
73.23057 1.35567 2.73443 3.05 26.37 .997
73.22530 1.40700 2.82620 3.16 26.47 .997
73.22706 1.45129 2.90082 3.24 26.58 .998
73.22530 1.49950 2.98455 3.34 26.68 .997
73.22882 1.48138 3.11270 3.45 25.45 .999
73.23057 1.59978 3.17079 3.55 26.77 .999
73.22530 1.65111 3.26256 3.66 26.84 .998
73.22706 1.69568 3.33702 3.74 26.94 .998
73.22530 1.74403 3.42067 3.84 27.01 .998
73.23057 1.84389 3.60715 4.05 27.08 .995
73.22530 1.89523 3.69891 4.16 27.13 .995
73.22706 1.94007 3.77322 4.24 27.21 .995
73.22530 1.98857 3.85679 4.34 27.28 .995
73.23057 2.08800 4.04351 4.55 27.31 .996

x/L 1.16;φ 25°≈≈
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Table III. Continued

(i)

x, in. y, in. z, in. r, in. φ, deg ppitot/pt,°∞
73.33074 −0.01269 0.00306 0.01 −76.44 2.695
73.33074 .07757 .04587 .09 59.40 2.694
73.31844 .17733 .09318 .20 62.28 2.701
73.33250 .25512 .13007 .29 62.99 2.706
73.33250 .34894 .17456 .39 63.42 2.713
73.33074 .43909 .21731 .49 63.67 2.723
73.33074 .52934 .26012 .59 63.83 2.723
73.31844 .62910 .30743 .70 63.96 2.721
73.33250 .70689 .34432 .79 64.03 2.717
73.33250 .80071 .38881 .89 64.10 2.715
73.33074 .89086 .43156 .99 64.15 2.675
73.33074 .98111 .47437 1.09 64.20 2.651
73.31844 1.08087 .52168 1.20 64.24 2.603
73.33250 1.15866 .55857 1.29 64.26 2.564
73.33250 1.25248 .60306 1.39 64.29 2.530
73.33074 1.34263 .64581 1.49 64.31 2.395
73.33074 1.43288 .68862 1.59 64.33 2.327
73.31844 1.53264 .73593 1.70 64.35 2.229
73.33250 1.61043 .77282 1.79 64.36 2.146
73.33250 1.70425 .81731 1.89 64.38 2.072
73.33074 1.79440 .86006 1.99 64.39 1.951
73.33074 1.88465 .90287 2.09 64.40 1.859
73.31844 1.98441 .95018 2.20 64.41 1.738
73.33250 2.06220 .98707 2.29 64.42 1.632
73.33250 2.15602 1.03156 2.39 64.43 1.533
73.33074 2.24617 1.07432 2.49 64.44 1.368
73.33074 2.33643 1.11712 2.59 64.45 1.297
73.31844 2.43618 1.16443 2.70 64.45 1.218
73.33250 2.51397 1.20132 2.79 64.46 1.163
73.33250 2.60779 1.24582 2.89 64.46 1.119
73.33074 2.69794 1.28857 2.99 64.47 1.062
73.33074 2.78820 1.33137 3.09 64.48 1.046
73.31844 2.88795 1.37868 3.20 64.48 1.030
73.33250 2.96574 1.41557 3.29 64.48 1.024
73.33250 3.05956 1.46007 3.39 64.49 1.012
73.33074 3.22381 1.55980 3.58 64.18 1.011
73.33777 3.29761 1.65718 3.69 63.32 1.004
73.32723 3.39629 1.68599 3.79 63.60 1.000
73.33425 3.60456 1.72912 4.00 64.37 .995
73.33074 3.67447 1.77637 4.08 64.20 .996
73.33777 3.74516 1.88011 4.19 63.34 .996
73.32723 3.84484 1.90690 4.29 63.62 .996
73.33425 4.05585 1.94439 4.50 64.39 .997

x/L 1.16;φ 64°≈≈
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Table III. Concluded

(j)

x, in. y, in. z, in. r, in. φ, deg ppitot/pt,°∞
73.33777 0.00722 −0.10206 0.10 94.05 2.681
73.33953 .10842 −.10349 .15 136.33 2.694
73.33777 .20108 −.10444 .23 152.55 2.700
73.33777 .30491 −.10551 .32 109.09 2.707
73.33777 .41005 −.10659 .42 104.57 2.713
73.33777 .50720 −.10641 .52 101.85 2.699
73.33953 .60839 −.10863 .62 100.12 2.715
73.33777 .70105 −.10959 .71 98.88 2.724
73.33777 .80488 −.11066 .81 97.83 2.736
73.33777 .91003 −.11174 .92 97.00 2.747
73.33777 1.00718 −.11075 1.01 96.28 2.747
73.33953 1.10836 −.11378 1.11 95.86 2.768
73.33777 1.20102 −.11474 1.21 95.46 2.784
73.33777 1.30486 −.11581 1.31 95.07 2.799
73.33777 1.41000 −.11689 1.41 94.74 2.813
73.33777 1.50716 −.11510 1.51 94.37 2.807
73.33953 1.60834 −.11893 1.61 94.23 2.790
73.33777 1.70100 −.11989 1.71 94.03 2.688
73.33777 1.80483 −.12096 1.81 93.83 2.508
73.33777 1.90997 −.12204 1.91 93.66 2.261
73.33777 2.00714 −.11944 2.01 93.41 1.908
73.33953 2.10831 −.12408 2.11 93.37 1.699
73.33777 2.20097 −.12504 2.20 93.25 1.496
73.33777 2.30480 −.12611 2.31 93.13 1.354
73.33777 2.40995 −.12719 2.41 93.02 1.231
73.33777 2.50713 −.12378 2.51 92.83 1.111
73.33953 2.60828 −.12923 2.61 92.84 1.054
73.33777 2.70095 −.13018 2.70 92.76 1.013
73.33777 2.80478 −.13126 2.81 92.68 .997
73.33777 2.90992 −.13234 2.91 92.60 .992
73.33777 3.00711 −.12813 3.01 92.44 .995
73.33953 3.10826 −.13438 3.11 92.48 .996
73.33777 3.20092 −.13533 3.20 92.42 .998
73.33777 3.30475 −.13640 3.31 92.36 .999
73.33777 3.40989 −.13749 3.41 92.31 .999
73.33777 3.51762 −.13860 3.52 92.26 .999
73.33777 3.62277 −.13968 3.63 92.21 .998
73.33777 3.70622 −.14054 3.71 92.17 .998
73.33777 3.81268 −.14163 3.82 92.13 .998
73.33777 4.01759 −.14375 4.02 92.05 .996
73.33777 4.12274 −.14483 4.13 92.01 .996
73.33777 4.20620 −.14569 4.21 91.98 .997
73.33777 4.31266 −.14678 4.32 91.95 .995
73.33777 4.51757 −.14889 4.52 91.89 .997

x/L 1.16;φ 92°≈≈
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(a)  Computational model and coordinate system.

L-80-6676
(b)  Experimental model installed in Langley 16-Foot Transonic Tunnel.

Figure 1.  Computational and experimental models.
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(a)  Cutaway view of grid topology and coordinate system.

Figure 2.  Details of computational region and grid.

Yη
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(b)  Details of surface meshes in vicinity of nozzle-afterbody.

Figure 2.  Continued.

External surface mesh

Internal surface mesh
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(c)  Details of mesh in vertical plane of symmetry near nozzle-afterbody.

Figure 2.  Concluded.

Block 3

Block 2

Block 4
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(b)  Details of external cross sections.

Figure 4.  Concluded.

a

b

y0

Y

Z

z0

Nozzle external geometry parameter —

x, in. β y0, in. a, in. z0, in. b, in.

55.050000

Typical cross section

9.000000 0.000000 3.400000 0.000000 3.100000
55.800000 9.000000 0.000000 3.400000 0.000000 3.100000
55.955000 8.971336 0.021620 3.377273 0.019712 3.079182
56.110000 8.885800 0.085850 3.309725 0.078265 3.017310
56.265000 8.744590 0.190812 3.199229 0.173926 2.916114
56.420000 8.550502 0.333435 3.048852 0.303860 2.778427
56.575000 8.306262 0.509542 2.862770 0.464213 2.608099
56.730000 8.016265 0.713960 2.646147 0.650215 2.409891
56.885000 7.685825 0.940668 2.404996 0.856320 2.189344
57.040000 7.321539 1.182966 2.146010 1.076359 1.952617
57.110255 7.147499 1.295949 2.024724 1.178869 1.841804
57.195000 6.923570 1.433990 1.873380 1.303889 1.706142
57.350000 6.459978 1.687944 1.603588 1.532708 1.456110
57.505000 5.932959 1.937487 1.335207 1.755519 1.209805
57.660000 5.351886 2.175169 1.078687 1.965047 0.974486
57.815000 4.728499 2.393870 0.841148 2.154417 0.757011
57.970000 4.078337 2.586997 0.629184 2.317381 0.563611
58.125000 3.424089 2.748665 0.448678 2.448520 0.399683
58.280000 2.803543 2.873865 0.304640 2.543429 0.269612
58.435000 2.287444 2.958598 0.201069 2.598861 0.176621
58.590000 2.006571 2.999990 0.140839 2.612835 0.122664
58.719355 2.000000 3.000108 0.125000 2.592250 0.108007
58.745000 2.000000 2.996991 0.125000 2.585239 0.107826
58.900000 2.000000 2.978153 0.125000 2.541479 0.106672
59.055000 2.000000 2.959315 0.125000 2.495322 0.105401
59.076861 2.000000 2.956659 0.125000 2.488617 0.105212
59.210000 2.000000 2.940478 0.125000 2.447643 0.104050
59.365000 2.000000 2.921640 0.125000 2.399957 0.102680
59.520000 2.000000 2.902802 0.125000 2.352287 0.101294
59.675000 2.000000 2.883964 0.125000 2.304635 0.099890
59.830000 2.000000 2.865126 0.125000 2.257001 0.098469
59.985000 2.000000 2.846288 0.125000 2.209385 0.097029
60.140000 2.000000 2.827450 0.125000 2.161787 0.095571
60.295000 2.000000 2.808613 0.125000 2.114208 0.094095
60.450000 2.000000 2.789755 0.125000 2.066648 0.092599
60.605000 2.000000 2.770937 0.125000 2.019108 0.091084
60.760000 2.000000 2.752099 0.125000 1.971587 0.089549
60.915000 2.000000 2.733261 0.125000 1.924087 0.087994
61.070000 2.000000 2.714423 0.125000 1.876607 0.086418
61.225000 2.000000 2.695585 0.125000 1.829148 0.084821
61.380000 2.000000 2.676747 0.125000 1.781711 0.083203
61.535000 2.000000 2.657910 0.125000 1.734295 0.081563
61.690000 2.000000 2.639072 0.125000 1.686902 0.079900
61.845000 2.000000 2.620234 0.125000 1.639532 0.078215
62.000000 2.000000 2.601396 0.125000 1.592185 0.076506
62.155000 2.000000 2.582558 0.125000 1.544826 0.074774
62.310000 2.000000 2.563720 0.125000 1.497563 0.073017
62.465000 2.000000 2.544882 0.125000 1.450289 0.071236
62.620000 2.000000 2.526045 0.125000 1.403040 0.069425
62.775000 2.000000 2.507207 0.125000 1.355817 0.067596
62.930000 2.000000 2.488369 0.125000 1.308621 0.065737
63.040000 2.000000 2.475000 0.125000 1.275143 0.064401
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(a)  External surface.

Figure 5.  Orifice locations for experimental model.

Row x, in. y, in. z, in.

1

Row 1

Row 2

Row 3

Row 4

Row 5

0 3.10000
1 55.80000

55.18000
0 3.10000

1 57.04000 0 3.02898
1 57.66000 0 2.93958
1 58.28000 0 2.81304
1 58.90000 0 2.64815
1 59.52000 0 2.45358
1 60.14000 0 2.25736
1 61.38000 0 1.86491
1 62.62000 0 1.47246
1 Base
2 55.80000 1.70000 3.09933
2 57.04000 1.66400 3.02897
2 58.28000 1.58900 2.81304
2 59.52000 1.51400 2.45358
2 61.38000 1.40100 1.86491
3 55.80000 3.18763 2.83000
3 56.42000 3.18233 2.82800
3 57.04000 3.16545 2.82200
3 58.28000 3.12765 2.73800
3 59.52000 3.00800 2.40700
3 61.38000 2.79131 1.81500
3 62.62000 2.64577 1.42300
3 Base
4 57.04000 3.32897 1.51400
4 58.28000 3.17851 1.40700
4 59.52000 3.02780 1.22700
4 61.38000 2.80175 0.93200
5 55.18000 3.40000 0
5 55.80000 3.40000 0
5 56.42000 3.38229 0
5 57.04000 3.32898 0
5 58.28000 3.17851 0
5 59.52000 3.02780 0
5 61.38000 2.80175 0
5 62.62000 2.65104 0
5 Base
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(b)  Internal surface.

Figure 5.  Concluded.

6 55.80000 0 1.94400
Row 6

Row 7

Row 8

Row 9

6 56.73000 0 1.31107
6 57.22300 0 1.04000
6 58.28000 0 1.08683
6 60.14000 0 1.17013
6 62.62000 0 1.28119
7 58.28000 1.23700 1.08683
7 60.14000 1.23700 1.17013
7 62.62000 1.23700 1.28119
8 57.22300 2.37500 1.04000
8 58.28000 2.37500 1.08683
8 60.14000 2.37500 1.17013
8 62.62000 2.37500 1.28119
9 57.22300 2.47500 0
9 58.28000 2.47500 0
9 60.14000 2.47500 0
9 62.62000 2.75000 0

Row x, in. y, in. z, in.
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Figure 6.  Typical convergence history.M∞ = 0.938; NPR = 4.017; and Jones-Launderk-ε turbulence model.
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(a)  Effect on surface pressures.

Figure 7.  Effect of mesh density on solution.M∞ = 0.938; NPR = 4.017; Baldwin-Lomax turbulence model; and top
row.
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(b)  Velocity vectors for 113× 53× 77 mesh.

(c)  Velocity vectors for 53× 27× 77 mesh.

Figure 7.  Concluded.
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(a) M∞ = 0.600; NPR = 4.003; and row 1 (external surface).

(b) M∞ = 0.600; NPR = 4.003; and row 6 (internal surface).

Figure 8.  Then+ distributions for top row of nozzle-afterbody.
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(c) M∞ = 0.938; NPR = 4.017; and row 1 (external surface).

(d) M∞ = 0.938; NPR = 4.017; and row 6 (internal surface).

Figure 8.  Concluded.
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(a)  Vertical plane of symmetry.

Figure 9.  Mach number contours.M∞ = 0.600; NPR = 4.003; and contour increment = 0.1.
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(b)  Horizontal plane of symmetry.

Figure 9.  Concluded.
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(a)  Vertical plane of symmetry.

Figure 10.  Velocity vectors.M∞ = 0.600; NPR = 4.003. (Most vectors not shown for clarity.)
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(b)  Horizontal plane of symmetry.

Figure 10.  Concluded.
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(a)  External surface.

Figure 11.  Computed oil flows (particle traces) on nozzle-afterbody surfaces.M∞ = 0.600 and NPR = 4.003.
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(b)  Internal nozzle surface.

Figure 11.  Concluded.

Jones-Launder k-ε turbulence model

Baldwin-Lomax turbulence model
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(a) M∞ = 0.600; NPR = 4.003; and row 1.

Figure 12.  External pressure coefficient distributions.
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(b) M∞ = 0.600; NPR = 4.003; and row 2.

Figure 12.  Continued.
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(c) M∞ = 0.600; NPR = 4.003; and row 3.

Figure 12.  Continued.
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(d) M∞ = 0.600; NPR = 4.003; and row 4.

Figure 12.  Continued.
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(e) M∞ = 0.600; NPR = 4.003; and row 5.

Figure 12.  Concluded.
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(a) M∞ = 0.600; NPR = 4.003; and row 6.

Figure 13.  Internal static pressure ratio distributions.
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(b) M∞ = 0.600; NPR = 4.003; and row 7.

Figure 13.  Continued.
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(c) M∞ = 0.600; NPR = 4.003; and row 8.

Figure 13.  Continued.
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(d) M∞ = 0.600; NPR = 4.003; and row 9.

Figure 13.  Concluded.
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(a) M∞ = 0.600; NPR = 4.003; and row 1 (external surface).

(b) M∞ = 0.600; NPR = 4.003; and row 2 (external surface).

Figure 14.  Skin-friction coefficient distributions.
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(c) M∞ = 0.600; NPR = 4.003; and row 3 (external surface).

(d) M∞ = 0.600; NPR = 4.003; and row 4 (external surface).

Figure 14.  Continued.
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(e) M∞ = 0.600; NPR = 4.003; and row 5 (external surface).

(f) M∞ = 0.600; NPR = 4.003; and row 6 (internal surface).

Figure 14.  Continued.
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(g) M∞ = 0.600; NPR = 4.003; and row 7 (internal surface).

(h) M∞ = 0.600; NPR = 4.003; and row 8 (internal surface).

Figure 14.  Continued.
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(i) M∞ = 0.600; NPR = 4.003; and row 9 (internal surface).

Figure 14.  Concluded.
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(a) φ = 0° (top row).

Figure 15.  Universal law-of-the-wall boundary layer profiles atM∞ = 0.600.
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(b) φ = 90° (side row).

Figure 15.  Concluded.
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(a) φ = 0°.

Figure 16.  Boundary layer profiles atM∞ = 0.600.
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(b) φ = 90°.

Figure 16.  Continued.
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(c) φ = 0°.

Figure 16.  Continued.
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(d) φ = 90°.

Figure 16.  Continued.
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(e) φ = 0°.

Figure 16.  Continued.
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(f) φ = 90°.

Figure 16.  Concluded.
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Figure 17.  Mach number contours in vicinity of nozzle throat. Vertical plane of symmetry; NPR = 4.003; and
M∞ = 0.600.
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Figure 18.  Velocity vectors in vicinity of nozzle throat (most vectors not shown for clarity). Vertical plane of symmetry;
Jones-Launderk-ε turbulence model;M∞ = 0.600; and NPR = 4.003.
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Figure 19.  Details of computed oil flow (particle traces) in vicinity of nozzle throat.M∞ = 0.600; NPR = 4.003; and
Jones-Launderk-ε turbulence model.
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(a)  Vertical plane of symmetry.

Figure 20.  Mach number contours.M∞ = 0.938; NPR = 4.107; and contour increment = 0.1.

1.
1

1.
2

0.1 0.2

0.8

1.5

1.5

0.3

0.
5

1.
0

1.0

1.
0

0.8

0

.05

.10

.15

1.
1

0.2

1.
2

1.5

1.0

0.3

0.
5

1.
0

0.8

0.1

1.5

0.8

1.
0

.85 .90 .95 1.00 1.05
0

.05

.10

.15

x/L

z/L

z/L

Jones-Launder
k-ε turbulence model

Baldwin-Lomax
turbulence model



81

(b)  Horizontal plane of symmetry.

Figure 20.  Concluded.
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(a)  Vertical plane of symmetry.

Figure 21.  Velocity vectors (most vectors not shown for clarity)M∞ = 0.938 and NPR = 4.017.
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(b)  Horizontal plane of symmetry.

Figure 21.  Concluded.
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(a)  External surface.

Figure 22.  Computed oil flows (particle traces) on nozzle-afterbody surfaceM∞ = 0.938 and NPR = 4.017.
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(b)  Internal nozzle surface.

Figure 22.  Concluded.
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(a) M∞ = 0.938; NPR = 4.017; and row 1.

Figure 23.  External pressure coefficient distributions.
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(b) M∞ = 0.938; NPR = 4.017; and row 2.

Figure 23.  Continued.
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(c) M∞ = 0.938; NPR = 4.017; and row 3.

Figure 23.  Continued.

.84 .88 .92 .96 1.00

0

.2

.4

–.6

–.8

–.4

–.2Cp

x/L

Experimental data

Jones-Launder k-ε turbulence model

Baldwin-Lomax turbulence model after
31 550 iterations; solution not converged



89

(d) M∞ = 0.938; NPR = 4.017; and row 4.

Figure 23.  Continued.
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(e) M∞ = 0.938; NPR = 4.017; and row 5.

Figure 23.  Concluded.
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(a) M∞ = 0.938; NPR = 4.017; and row 6.

Figure 24.  Internal static pressure ratio distributions.

.86 .88 .92.90 .96 .98.94 1.00

.2

.4

.6

.8

1.0

0

p/pt,j

x/L

Experimental data

Jones-Launder k-ε turbulence model

Baldwin-Lomax turbulence model



92

(b) M∞ = 0.938; NPR = 4.017; and row 7.

Figure 24.  Continued.
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(c) M∞ = 0.938; NPR = 4.017; and row 8.

Figure 24.  Continued.
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(d) M∞ = 0.938; NPR = 4.017; and row 9.

Figure 24.  Concluded.
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(a) M∞ = 0.938; NPR = 4.017; and row 1 (external surface).

(b) M∞ = 0.938; NPR = 4.017; and row 2 (external surface).

Figure 25.  Skin-friction coefficient distributions.
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(c) M∞ = 0.938; NPR = 4.017; and row 3 (external surface).

(d) M∞ = 0.938; NPR = 4.017; and row 4 (external surface).

Figure 25.  Continued.
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(e) M∞ = 0.938; NPR = 4.017; and row 5 (external surface).

(f) M∞ = 0.938; NPR = 4.017; and row 6 (internal surface).

Figure 25.  Continued.
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(g) M∞ = 0.938; NPR = 4.017; and row 7 (internal surface).

(h) M∞ = 0.938; NPR = 4.017; and row 8 (internal surface).

Figure 25.  Continued.
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(i) M∞ = 0.938; NPR = 4.017; and row 9 (internal surface).

Figure 25.  Concluded.
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(a) φ = 0° (top row).

Figure 26.  Universal law-of-the-wall boundary layer profiles atM∞ = 0.938.
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(b) φ = 90° (side row).

Figure 26.  Concluded.
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(a) φ = 0°.

Figure 27.  Boundary layer profiles atM∞ = 0.938.
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(b) φ = 90°.

Figure 27.  Continued.
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(c) φ = 0°.

Figure 27.  Continued.
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(d) φ = 90°.

Figure 27.  Continued.
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(e) φ = 0°.

Figure 27.  Continued.
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(f) φ = 90°.

Figure 27.  Concluded.
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(a) x/L = 1.000.

Figure 29.  Pitot pressure ratio distributions in jet plume atM∞ = 0.600.
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(b) x/L = 1.000.

Figure 29.  Continued.
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(c) x/L = 1.081.

Figure 29.  Continued.
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(d) x/L = 1.081.

Figure 29.  Continued.

.07

.06

.05

.04

.03

.02

.01

0 .5 1.0 1.5 2.0
ppitot/pt,∞

2.5 3.0 3.50 .5 1.0 1.5 2.0
ppitot/pt,∞

2.5 3.0 3.5

r/L

Experimental data (ref. 21)

Jones-Launder k-ε turbulence model

Baldwin-Lomax turbulence model (afterbody and nozzle)

Nozzle lip line

φ ≈ 65° φ ≈ 92°

Nozzle lip line



113

(e) x/L = 1.162.

Figure 29.  Continued.
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(f) x/L = 1.162.

Figure 29.  Concluded.
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(a) M∞ = 0.600.

Figure 30.  Afterbody-drag coefficient buildup.
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(b) M∞ = 0.938.

Figure 30.  Concluded.
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